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Overview 
Artificial intelligence has gained huge amounts of traction in recent years, 

especially since Deep Learning (DL). Within the field of DL, processes to identify objects 
through image data are grouped into the sub-field of Objection Detection.  

 
Domains of Applications 

Today, detection algorithms have taken center stage as many big corporations are 
racing toward building the first generation of autonomous vehicles. Of course, detection 
algorithms are not only limited to autopilot applications. The same techniques are also 
used for medical image analysis, anomaly detection, video surveillance, object tracking, 
and face detection amongst plenty other use cases. In this review, I am mainly interested 
in shining light on the state-of-the-art algorithms used for autopilot applications.  
Current Challenges 

One of the biggest problems in self driving cars is perception, that is, to being able 
to fully understand the environment around it. Other from needing to process billions of 
image, lidar, radar, and map data, there is a critical need for faster and more robust 
algorithms that will improve the safety and reliability of these autonomous systems. There 
are many concerns about how quickly they can come to market even if they work some of 
the time -- The technology has to work perfectly.  

 
The recent advances in image recognition are powered by the formation of large-

scale datasets, the development of powerful models, and the availability of vast 
computational resources. The obvious challenge, then, arises when there is no large-scale 
labeled data. In the case for autopilot applications, amongst thousands of possible 
scenarios, let’s imagine the instance for which, at a crosswalk, a pedestrian on the curb is 
looking down at his phone. A human driver will be able to decide whether he should wait or 
hit the gas pedal. What about a biker’s hand sign to signal a turn? An eye contact at a four 
way stop sign can decide who goes first, but how is the autonomous car going to react? 
The truth is, there is still a long way to go before robots can accurately differentiate 
complex social interactions. Furthermore, from an analytical point of view, current leading 
algorithms are, while accurate, very computationally intensive, such that they are too slow 
for real-time applications, and simply do not run on embedded systems[1]. 
Objective 

Two years ago, I built a quadcopter from scratch and attempted to implement 
statistical object detection algorithms in an attempt to make it fully autopilot. It did not 
recognize certain tree branches and leaves as it came crashing down. Updated with DL, I 
want to build an autopilot system that navigates traffic. To do this, I will explore two main 
algorithms used in the industry. They are You Only Look Once (YOLO), and Single Shot 
Detector (SSD). By the end of this literature review, I will pick the best detector and 
configurations that give the best balance between speed and accuracy to proceed with. 
Methodology 

In order to establish a controlled environment to compare the results from the 
above-mentioned algorithms, I plan on dividing the workload in three. I will start by 
creating a custom training, validation, and testing dataset from the Waymo Open Dataset. 
The second step is to implement the models in TensorFlow. For that, I will use scikit-image 
and OpenCV library with Python bindings for image processing, and Keras library with a 
Tensorflow backend to build and train networks. Then, once trained, I will test these 
algorithms, on a NVIDIA Jetson Nano, in real time through the video feed of a Raspberry Pi 
Camera Module v2 to settle the best algorithm for real-time onboard object detection. I will 
highlight the tradeoff between speed and accuracy and pick the most balanced solution.  
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Structure of this Document 
The rest of the synthesis is organized as follows. In the next section, I will dive 

deeper into YOLO, and SSD. I will break down the inner workings of both of these 
detectors and highlight some of their differences from one another.  

Following that section, I will analyze the performance of each detector. One of my 
analysis criteria will be their speed at inference allowing real-time analysis. This section will 
shed light upon the advantages and drawback for each algorithm.  

To conclude this review, in the very last section, I will discuss the significance of 
findings and add my interpretation of the tradeoff between speed and accuracy. I will then 
choose the best configurations for onboard autopilot systems to proceed with in my final 
project. 

Synthesis 
Object detection is one area in computer vision that is maturing very rapidly. Every year, 
new algorithms outperform previous ones. There exist many robust techniques for 
classification problems, but convolutional neural networks (CNN) have been proven to be 
one of the best architectures.  
Currently, every state-of-the-art model incorporates CNN in some way.  
Convolutional Neural Network (CNN) 

Unlike object recognition, whose sole mission is to classify the object in an image, 
object detection solves the problem of localizing an object in an image. In this is report, I 
will provide an intuition of the workings of CNN. 
 
In a CNN, there are four main operations: the convolution, the activation function, the 
pooling, and the fully connected layer for classification. 
 
First, the purpose of the convolutional step is to extract features from the input image. 
Convolution, in the field of AI, is strictly speaking, cross-correlation. Without going too 
much into the math, convolution performs element-wise multiplication and additions. This is 
done by sliding a filter over a larger matrix. And at every location, it computes element-
wise multiplication, sums the products, and outputs in a single element in the output 
matrix. This output matrix is called a feature map. By sliding different kinds of filters, we 
detect different features, such as edges and curves. 
 
Following convolution, the next operation is the activation function. The purpose of the 
activation function is to determine the output of the layer. In the case of object detection, 
we want to predict probabilities as an output, we want to introduce some form of non-
linearity to help generalize data.  
For example, ReLU simply replaces every negative value in the feature map to zero. The 
resulting matrix is called a rectified feature map. 
 
The third step is the pooling step. The purpose of pooling is to reduce the dimensionality of 
feature maps, hence reducing computation complexity while only retaining the most 
important information. The most common form of pooling is max pooling. When we apply 
max pooling on a rectified feature map, only the largest value in each region is retained. 
Every other value is discarded. This step also prevents overfitting. 
 
The last step is the classification step. A fully connected layer uses typically, a softmax 
function on the output from the pooling layers to classify the input image. In the case of 
object detection, its output is a set of probabilities that describes the likelihood of each 
class. The sum of these probabilities is 1.  
 
In the rest of this section, we will see how researchers use these steps in different 
combinations to build state-of-the-art algorithms. 
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Image Classification 
Before we jump straight into state-of-the-art detection algorithms, I want to clarify some big 
ideas and we will slowly work our way to how these algorithms are implemented. 
 
Starting with the most common problem in computer vision, the applications of image 
classification range from face detection on social media to cancer detection in medicine. 
The mission of an image classification algorithm is to look at an image and to classify the 
object in it.  

 
Figure 1: Image classification using CNN 

Given an input image of some width, height, and channel depth, we convolve the image by 
some number of filters (4 in Figure 1). The output of the convolution is treated with non-
linear transformations like Max Pool and ReLU. Generally, a network has multiple layers of 
convolution and non-linear transformations. The output of the final layer is sent to a Softmax 
layer that gives the probability of the input image being of a particular class. The network 
then aims to minimize a loss function to make predictions more accurate.  
Object Classification and Localization 
Following image recognition, the next step toward object detection is to localize an object 
in a given image and the draw a bounding box centered around the object. In other words, 
the algorithm has to learn the centroid position of the object and the proportion between 
the width and height of its bounding box. We add 4 more parameters to the output layer.  

 
Figure 2: In the output, there is an addition of centroid x and y coordinates, width, and height of the bounding box. 
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And similarly to image recognition algorithms, in the input image is sent through multiple 
layers of convolution, Max Pool, and RELU layers before returning the coordinates of 
different objects we want to recognize.  
Multiple Objects Detection and Localization 
In the previous subsection, we described how an algorithm could detect a single object in 
an input image. To classify and localize multiple objects in an image, we apply the same 
technique, but we are dividing the input image into many smaller images before running 
CNN on every cropped image for object detection. The CNN could be any convolution 
neural network, such as VGG16. 

 
Figure 3: Starting with a small sliding window, we are on the lookout for small objects. We gradually increase the size of the 
sliding window to detect larger and larger object. Finally, the output is a set of regions that contains objects and their bounding 
boxes. 

The way that the cropping is done is by sliding a window across the entire image. Starting 
with a small sliding window, the algorithm crops out a part of the input image and passes it 
to a CNN to make a prediction before sliding to another part of the image. Once every 
portion of the input image has gone through the CNN, the algorithm repeats every step 
with a bigger sliding window. In the end, the algorithm returns a set of cropped regions 
that contains an object along with its class and bounding box.  
The downside with this algorithm is performance. We need to ask the model for a 
prediction every time we slide the window. One solution could be to increase the stride of 
the sliding window, but we might fail to detect some objects. However, if we use a small 
stride, many pixels are going to be shared and a lot of information are going to be 
redundantly calculated.  
In the past, it was not a problem because models were mostly linear and had features 
designed by hand, but nowadays, models like VGG16 has hundreds of millions of 
parameters. It is then impossible to do real-time object detection, which is what my project 
is about.  
To reduce computational complexity of passing cropped images one at a time, we replace 
the fully connected layer in the CNN with 1x1 convolution layers that passes the complete 
image at once and we do it for every window size.  
You Only Look Once (YOLO) 
A better solution to the sliding window algorithm is YOLO. It is based on a minor tweak 
from the algorithm described above. Again, the input images are labeled with four 
additional variables: the centroid coordinates (x, y), height(h), and width(w) of the 
bounding box. Then, the idea is to divide the input image into an S by S grid where every 
bounding box can be part of several grids, but we assign the object and bounding box to 
the grid that contains the centroid coordinates of the object. The model can then predict 
the geometry and position of the bounding box, on top of the object class. And because 
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the model learns to mark objects with bounding boxes, the bounding boxes are more 
accurate.  

 
Figure 4: Image is divided into a 7x7 grid, where the yellow grid is responsible for detecting the person object because the 
centroid coordinates (blue dot) of that person is in the yellow grid. 

Each grid cell predicts a fixed number (𝐵) of bounding boxes, but only detects one object 
per grid. This sets a hard limit on how close objects can be. 
 
For every bounding box prediction, there are five predicted values: {𝑥, 𝑦, 𝑤, ℎ, 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒}. 
The first four are the spatial coordinates of the object and the aspect ratio of its bounding 
box. The last element is the bounding box confidence score defined as: 

𝑃(𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑜𝑈!"#$%&'%()'"*'+  
where IoU means intersection over union. It represents the area of intersection over the 
area of union of the predicted bounding box and the ground truth box. In practice, any IoU 
over 50% is usually considered a correct prediction.  
Looking from the above equation, the confidence score measures the probability that the 
bounding box contains an object and how well the predicted box matches the ground 
truth. If there is no object in that grid cell, the box confidence score is 0.  
 
The output tensor also predicts a set of conditional class probabilities (𝐶): 

𝑃(𝐶𝑙𝑎𝑠𝑠%|𝑂𝑏𝑗𝑒𝑐𝑡) 
which is the conditional probability of an object to belong to class 𝑖. This means that if no 
object is present in the grid cell, the loss function will not count it as a wrong prediction.  
 
Next, we calculate the class confidence scores by multiplying the conditional class 
probabilities with the bounding box confidence scores: 

𝑃(𝐶𝑙𝑎𝑠𝑠%|𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝑃(𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑜𝑈!"#$%&'%()'"*'+ = 𝑃(𝐶𝑙𝑎𝑠𝑠%) ∗ 𝐼𝑜𝑈!"#$%&'%()'"*'+  
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Figure 5: Each yellow column vector represents class scores for a bounding box. We first define a threshold value and set those 
below the threshold value to 0. Then, we sort the class scores vectors in descending order. Finally, we apply a Non-max 
suppression algorithm to set redundant detections to 0. 
After calculating the class confidence scores for each bounding box, we set a threshold 
value of scores and sort them in a descending fashion for each class. To get rid of multiple 
boxes detection the same object, we apply a Non-max suppression algorithm to keep the 
boxes with maximum probability and suppress the boxes with high IoU with them. 
The final tensor output for a S by S grid, is then 𝑆 × 𝑆 × (𝐵 ∗ 5 + 𝐶), where 𝐵 denotes the 
number of bounding boxes and 𝐶 represents the number of class predictions.  

 
Figure 6: The network structure looks like any CNN, with convolutional and max pooling layers, followed by two fully connected 

layers. 

Once we understand how the predictions are encoded, YOLO’s architecture is simple to 
understand. The network comprises of 24 convolutional layers followed by two fully 
connecter layers. The alternating use of 1x1 reduction layers to reduce the depth of the 
features space followed by a 3x3 convolutional layer was inspired by the GoogLeNet 
(Inception) model[2]. As for activation functions, the final layer uses a linear activation 
function, but every other layer employs leaky RELU as activation function: 

𝜙(𝑥) = < 𝑥
0.1𝑥

𝑤ℎ𝑒𝑛	𝑥 > 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
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Figure 7: The architecture was designed for the Pascal VOC dataset, 

where the researchers used S=7, B=2, and C=20. 
 

During training, a weighted sum between the localization error and classification error is 
calculated. The researchers chose to calculate sum-square errors because it is easy to 
optimize. They use a weighted sum because when there is no object in a grid cell, the 
confidence score is 0 and that can lead the training to diverge[2]. The multi-part loss 
function is: 

𝜆&(("$GGΙ%,
(-,[(𝑥% − 𝑥K%). + (𝑦% − 𝑦K%).]

/

,01

2!

%01

 

+	𝜆&(("$GGΙ%,
(-, NO√𝑤% − √𝑤Q %R

.
+ S√ℎ% −TℎU %V

.
W

/

,01

2!

%01

 

+	GGΙ%,
(-,O𝐶% − 𝐶X%R

. +	𝜆)(3-,GGΙ%,
)(3-,O𝐶% − 𝐶X%R

.
/

,01

2!

%01

/

,01

2!

%01

 

+GΙ%,
(-,

2!

%01

G (𝑝%(𝑐) − 𝑝̂%(𝑐)).
&∈&5677#7

 

 
The researchers set 𝜆&(("$ = 5 and 𝜆)(3-, = 0.5 as parameters to balance the localization 
loss and the confidence loss.  
To digest the whole loss function, we are going to break it down into parts. The first term of 
the equation represents the loss related to the position of the predicted bounding box: 

𝜆&(("$GGΙ%,
(-,[(𝑥% − 𝑥K%). + (𝑦% − 𝑦K%).]

/

,01

2!

%01
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where Ι%,
(-, represents whether an object is in grid cell 𝑖 and 𝑗 is the bounding box that is 

responsible for that prediction. Multiplying by this tensor will avoid counting the error on 
bounding boxes that are not responsible for the object. 
This term computes a sum over each bounding box 𝑗 for each grid cell 𝑖. 
Moving on to the second term: 

𝜆&(("$GGΙ%,
(-, NO√𝑤% − √𝑤Q %R

.
+ S√ℎ% − TℎU%V

.
W

/

,01

2!

%01

 

The second term represents the loss related to the width and height of the bounding box. 
The function calculates in the same way as the one above, but it does not predict the width 
and height of the bounding box. By predicting the square root of 𝑤 and ℎ, a deviation in a 
larger bounding box is going to matter less than the same deviation in a smaller bounding 
box.  
The third part of the loss function is the loss reflecting the confidence score for each 
bounding box: 

GGΙ%,
(-,O𝐶% − 𝐶X%R

. +	𝜆)(3-,GGΙ%,
)(3-,O𝐶% − 𝐶X%R

.
/

,01

2!

%01

/

,01

2!

%01

 

where 𝐶 is the confidence score and 𝐶X is the IoU of the predicted bounding box with the 
ground truth. Here Ι%,

)(3-, does the opposite of Ι%,
(-,. It is 1 when there is no object in grid 

cell 𝑖. 
Finally, the last term of the loss function:  

GΙ%,
(-,

2!

%01

G (𝑝%(𝑐) − 𝑝̂%(𝑐)).
&∈&5677#7

 

represents the classification loss. The function first computes the sum-squared error for 
class classification, and only sums over the grid cells that contain an object. This will avoid 
counting classification error from grid cells that do not contain an object. 
 
So how did the researchers train the network? The researchers pretrained the first 20 
convolutional layers followed by an average-pooling layer and a fully connected layer on 
the ImageNet 1000-class competition dataset, using an input resolution of 224x224. They 
then increased the resolution to 448x448 for detection.  
After a week of pretraining, they then trained the full network for 135 epochs using a batch 
size of 64, momentum 0.9, and decay of 0.0005. For the first few epochs, they slowly 
raised the learning rate from 0.001 to 0.01 to avoid unstable gradients. They kept 0.01 for 
the next 75 epochs. After that, they decreased the learning rate back to 0.001 for 30 
epochs, before finally decreasing it further down to 0.0001 for another 30 epochs.  
To combat overfitting, the researchers placed a dropout layer with a rate of 50% after the 
first connected layer to prevent neurons to rely on each other. The researchers also 
introduced data augmentation with random scaling and translations of up to 20% of the 
original image size, as well as randomly adjusted the exposure and saturation of the 
original images. 
Single Shot MultiBox Detector (SSD) 
Developed in 2016 by Liu et al., SSD is also a one-step approach, hence the name “single 
shot detector”. SSD is comprised of two main components:  

1) A backbone model, that functions as a feature extractor. It is usually a pre-trained 
image classification network like ResNet or Mobilenet, but whose final fully 
connected classification layer has been removed. In the paper [1], Liu et al used 
VGG16.  

2) And, an SSD head, made out of convolutional layers that progressively decreases 
in size to allow detection at multiple scales, unlike YOLO that operates on one 
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single scale. It outputs the bounding boxes and classes of objects in the spatial 
location of the final layer activations.  

 
Figure 8: SSD architecture featuring VGG16 serving as backbone model. 

First, SSD also works by dividing the input image into a grid of cells. Each grid cell is 
responsible for predicting the class and position of objects within it. If there is no object, it 
will predict the background class, and no location will be returned.  
SSD detects objects through multi-scale feature maps. As CNN reduces the spatial 
dimension gradually, the resolution of the feature maps also decreases, but in the SSD 
framework, lower resolution layers are used to detect larger scale objects, as shown in 
Figure 9 (c).  
 
To detect objects with different aspect ratio, each grid cell is assigned with multiple (4 or 
6) anchor boxes of different aspect ratio centered at the grid cell. The researchers refer to 
these as default boxes. The predictions on boundary boxes are relative to the center of 
those default boxes. We thus define the offsets to the default box at each cell {Δx, Δy,w, h}.	 

 
Figure 9: (a) A training data containing ground truth boxes for the cat and the dog. (b) In a feature map that is divided into an 
8x8 grid, the anchor boxes of different aspect ratios cover the smaller areas of the raw input. (c) In a coarser grid, the anchor 
boxes detect objects in larger areas of the input.  

 
Default boxes are chosen manually. SSD defines a scaling factor for each feature map. 
Suppose there are m feature maps, and we define index 𝑘 ∈ [1,𝑚] to represent the k-th 
feature map. Then, 

𝑠8 = 𝑠9%) +
𝑠96: − 𝑠9%)
𝑚 − 1 (𝑘 − 1) 
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where 𝑠9%) = 0.1, 𝑠96: = 0.7, and 𝑠9;< = 1. This means that starting from the left, the 
layers in the SSD head detect objects from the smallest scale of 0.1 all the way up to a 
scale of 0.7.  
We can then compute the width and height of the default boxes: 

𝑤 = 𝑠 ∗ T𝑎𝑠𝑝𝑒𝑐𝑡	𝑟𝑎𝑡𝑖𝑜 
ℎ = 𝑠/T𝑎𝑠𝑝𝑒𝑐𝑡	𝑟𝑎𝑡𝑖𝑜 

where aspect ratio ∈ h1, 2, 3, <
.
, <
=
k 

For the aspect ratio of 1, the SSD adds an extra default box with scale: 
𝑠8′ = T𝑠8 ∗ 𝑠8;< 

And the center of the default boxes is written as: 

m
𝑖 + 0.5
𝑓8

,
𝑗 + 0.5
𝑓8

o 

where 𝑓8 is the size of the k-th feature map and 𝑖, 𝑗	 ∈ [0, 𝑓8). 
 
It is by combining the predictions from every default box of different scales and aspect 
ratios coming from every grid cell on every feature map that SSD can detect objects of 
every shape and size. This number is usually in the thousands, and as for larger models 
like SSD512, the output makes 24564 predictions[1]. 
 
During training, the default boxes with the highest degree of IoU with the ground truth box 
are matched with that object. In other words, the more overlap there is between a default 
box and a ground truth box, the better match it is. In Figure 9 (b), there are two matched 
anchor boxes with the cat. These anchor boxes are called positive matches, whereas the 
two other ones are negative matches.  
Similarly to YOLO, the loss function for SSD is a weighted sum of classification loss and 
localization loss: 

𝐿 = 	
1
𝑁 (𝐿&5677%>%&6'%()+∝ 𝐿5(&65%?6'%()) 

where N is the number of matched anchor boxes and ∝ balances the weights between the 
losses.  
 
The localization loss is a loss between the predicted box correction (𝑑9% ) and the true 
values 𝑔9

, : 
𝐿5(&65%?6'%() =	G G Ι%,8

9∈{:,B,C,+}

𝐿79(('+E<(𝑑9% − 𝑡9
, ).

%,

 

where Ι%,8  represents the matching between 𝑖'+ anchor box with coordinates (𝑝:% , 𝑝B% , 𝑝C% , 𝑝+% ) 
and 𝑗'+ ground truth box with coordinates (𝑔:% , 𝑔B% , 𝑔C% , 𝑔+% ) for an object in class 𝑘. It is 1 if if 
𝐼𝑜𝑈 > 0.5, and 0 otherwise.  
𝐿79(('+E< is a Smooth L1 loss defined as: 

𝐿79(('+E<(𝑠) = u 0.5𝑠.
|𝑠| − 0.5

𝑤ℎ𝑒𝑛	|𝑠| < 1
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

𝑡9
,  represent the offsets for the center, width, and height of the anchor boxes. They are 

defined as:  
𝑡:
, = (𝑔:

, − 𝑝:% )/𝑝C%  
𝑡B
, = (𝑔B

, − 𝑝B% )/𝑝+%  

𝑡C
, = log z

𝑔C
,

𝑝C%
{ 
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𝑡+
, = log z

𝑔+
,

𝑝+%
{ 

As for the classification loss, we apply a softmax to make it a nice probability function:  

𝐿&5677%>%&6'%() =	− G Ι%,8 logO𝑐̂%8R
F

%∈G(7

− G log(𝑐̂%1)
F

%∈F#H

 

where 𝑐̂%8 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥O𝑐%8R =
#:!(&"

#)
∑ &"

#
#

 
 
For positive matches, the classification loss is penalized according to the confidence score 
of class 𝑘. For negative matches, SSD predicts class 0, or background, meaning no object 
was detected.  
 
As mentioned above, there is a very large number of predictions that are made for the 
number of objects present in a given image. This means that there will be many times more 
negative matches than positive matches. This imbalance causes the model to learn about 
the background space rather than detecting objects. Rather than using all the negative 
matches, SSD only keeps the matches with highest confidence (false positives) as to keep 
a ratio of 3:1 between negatives and positives. Apparently, this ratio leads to faster 
optimization and even makes the training process more stable[12]. 
 
To improve accuracy, the researchers used data augmentation on every input image. 

• Use the original 
• Sample a patch with IoU of 0.1, 0.3, 0.5, 0.7, or 0.9 
• Sample a patch randomly 

The sampled patch is then resized to a fixed size before undergoing two photometric 
distortions[4].  
 
YOLOv2 

A year after YOLO was published, Redmon et al. came up with a faster and more 
accurate version of YOLO. YOLOv2, the modified YOLO, highlights 7 major changes.  

The first major modification is the addition of batch normalization to every layer. 
Batch normalization prevents activations from blowing up or going to zero, so it helps the 
training to converge. It also introduces some noise to each hidden layer’s activations, 
hence removing the need for dropout. The best part is that mAP was pushed up by over 
2% [29000]. 
 

The second change is a fine tune on the classification network by training at 
448x448 resolution for 10 epochs after the usual 224x224. This change increases mAP by 
almost 4%[29000]. 
 

The third change is the replacing of the two fully connected layers that makes 
arbitrary guesses on the boundary boxes with convolution layers. In early training, different 
shaped boxes are fighting each other on what shape to focus on. To remedy this problem, 
the researchers suggest handpicking a set of boundary boxes that are diverse in shape. 
With convolution layers, we predict offsets and confidence to each of the anchor boxes 
instead of predicting a set of anchor boxes.  
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Figure 10: Choosing more diverse anchor boxes. 

 
So if we handpicked 5 anchor boxes of diverse shapes, each prediction is going to consist 
of the 4 spatial parameters for the predicted bounding box, 1 confidence score, and 𝑐 
class probabilities. Since each boundary box has 5 + 𝑐 parameters and there are 5 
predictions per grid cell, we calculate 5 ∗ (5 + 𝑐) parameters per grid cell. Just like YOLO, 
the confidence scores are still the overlap between the predicted box and the ground truth 
box. And the class prediction:	

𝑃(𝐶𝑙𝑎𝑠𝑠%|𝑂𝑏𝑗𝑒𝑐𝑡) 
is still given by the conditional probability of 𝐶𝑙𝑎𝑠𝑠% given 𝑂𝑏𝑗𝑒𝑐𝑡. 

 
And because large objects usually occupy the center of an image, the researchers shrank 
the input images from 448x448 to 416x416. This yields a 7x7 grid, instead of the 8x8 grid 
in YOLO. This allows for a single center grid to be responsible for a large object. 
  
By adding these anchor boxes, YOLOv2 can predict 19 ∗ 19 ∗ 5 = 1805 boxes, compared 
to the 98 in the original work[3]. The precision dropped a little, but the recall is increased 
by a large margin. 
 

The fourth change arises from the choice of anchor boxes. Rather than picking 
anchor boxes by hand, the researchers ran k-means clustering to pick the most 
appropriate anchor boxes. They found that setting 𝑘 = 5 gives the best tradeoff between 
recall and complexity.  
 

The fifth modification works at putting constraints on the location of the bounding 
box. In the original YOLO, the predicted bounding box can be far from the original grid 
location, resulting in instability in the early iterations. YOLOv2 makes following predictions: 

𝑃(𝑜𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑜𝑈(𝑏, 𝑜𝑏𝑗𝑒𝑐𝑡) = 𝜎(𝑡() 
𝑏: = 𝜎(𝑡:) + 𝑐: 
𝑏B = 𝜎O𝑡BR + 𝑐B 
𝑏+ =	𝑝+𝑒'$ 
𝑏C =	𝑝C𝑒'% 
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where 𝑡 are the values predicted by anchor boxes, (𝑐: , 𝑐B) is the centroid coordinates of 
the box, and 𝑝+ , 𝑝C are the height and width of the anchor box. By using 𝜎 to bound the 
location, we observe a 1% increase in mAP. 

 
Figure 11: Constrained bounding box prediction. 

 
The sixth modification is the addition of a passthrough layer that brings features 

from a higher resolution layer directly to the detector. This change helps YOLOv2 to detect 
smaller objects, hence increasing the mAP by 1%. 
  

 
Figure 12: YOLOv2 architecture featuring a passthrough layer. 

 
The final change is at the level of training. During training, at every 10 batches, new 

image dimensions are randomly chosen to increase robustness. This regime improves 
predictions at different input resolutions.  
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Figure 13: Accuracy improvement after applying the 7 changes. 

 
YOLOv3 
Redmon et al. claim to have “phone[d] it in for a year” and “didn’t do a whole lot of 
research” in 2018[5]. They made some tweaks to the model and YOLOv3 is better and 
stronger, but slower than YOLOv2. 
 

 
Figure 14: YOLOv3 architecture. 

Walking through the whole system, YOLOv3 works in the following way:  
1. YOLOv3, just like YOLOv2, predicts a confidence score using logistic regression. 

This returns 1 if the anchor box overlaps the ground truth box better than any other 
anchor box. There is only one anchor box associated with each ground truth box. A 
cross-entropy error loss is used instead of the sum squared error loss. 
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2. Each bounding box may predict more than one class, because YOLOv3 now 
performs multilabel classification. This helps with classes that are not mutually 
exclusive, like “pedestrian” and “child”.  

3. Instead of the usual softmax layer for class prediction, YOLOv3 now uses a logistic 
classifier for each class.  

4. The most salient feature of YOLOv3 is the detection at 3 scales. YOLOv3 applies 
1x1 kernels on feature maps at 3 different places in the network. At those 3 places, 
the dimensions of the input image get downsampled, respectively, by 32, 16, and 8.  

5. In the last feature map layer, it goes back by 2 layers and upsamples it by 2. The 
upsampled layers are then concatenated with the previous layers to preserve the 
fine-grained features that improves the detections of small objects. 

6. We are still using k-means clustering to choose 9 anchor boxes. These anchor 
boxes are divided into 3 groups of 3 by their size, 1 group for each scale. Redmon 
et al. “chose 9 clusters and 3 scales arbitrarily”[5]. 

7. As illustrated in Figure 14, the new feature extractor network, named Darknet-53, is 
a hybrid of successive 3x3 and 1x1 convolutional layers and residual network 
(ResNet). The residual blocks are passthrough layers essentially. The network 
consists of 53 convolutional layers, has less billion floating point operations 
(BFLOP) than ResNet-152, and achieves the same accuracy at twice the speed. 

8. The training is still done on full images with no hard negative mining. Multi-scale 
training, data augmentation, and batch normalization are still used.  

 
Summary 
So far, we have examined the algorithmic changes in the YOLO family as well as studied 
SSD in detail.  
 

 
Figure 15: Similar architectures. 

To summarize, we can see from Figure 15 that YOLOv3 is quite similar to SSD. The 
difference is that YOLOv3 uses upsampling to obtain fine-grained features whereas SSD 
gradually downsamples. SSD runs detection on 6 feature maps ranging from 1x1 to 19x19 
to detect objects of every size. YOLOv3, like SSD, makes predictions at 3 different scales.  
YOLOv2, on the other hand, only has a 13x13 feature map. This limitation prevents  
YOLOv2 to accurately detect smaller objects, despite the passthrough layer.  
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Like YOLO, each SSD grid cell makes multiple predictions. It was found that making 5 
detections per grid was optimal for YOLOv2. YOLOv3 makes a 3 detections per grid cell 
per scale and SSD uses 3-4 detectors per finer grid, and 6 on coarser grids.  
 
The coordinate predictions are also a little different. For SSD, does not apply a sigmoid to 
the predicted centroid coordinates offset. This means that the centroid coordinates of the 
predicted box can be outside of the grid.  
 
SSD also does not predict a confidence score. Instead it solves this by having a 
background class to signify that no object was found by the detector. It is treated in the 
same way as a low confidence score in YOLO. 
 
The anchor boxes in SSD are also different from those in the YOLOv1 and YOLOv2. SSD 
uses different sizes of anchors on different size of grids. A finer grid will have smaller 
anchors than a coarser grid. Since YOLOv1 and YOLOv2 only has one grid, the sizes of 
their anchor boxes differ widely. Also, in SSD, the anchors do not specialize on an object 
size, different grids do that. In the YOLO family, anchor boxes compete with each other to 
specialize in both the shape and size of an object, which causes some instability in early 
training. 
 
The choice of anchors in SSD is made via simple equations that we’ve seen above, 
whereas YOLOv2 and YOLOv3 run k-means clustering on the training data to choose the 
best set of anchor boxes.  
 
SSD outputs many more predictions than YOLO because of its greater number of grids 
and anchors, so it has an advantage of finding every object in the image, but the downside 
to that is that it has to run hard negative mining to determine which predictions to keep. 

Analysis 
In the previous section, we have looked at state-of-the-art single stage object detection 
models. We have also seen that some minor differences between each one of them can 
lead to interesting architectural differences.  
 
In this section we will qualitative examine the performance of these algorithms. The main 
focus is this analysis will be on speed and accuracy. 

 
Figure 16: Performance of different configurations of YOLOv2 and SSD. 

 
Figure 16 is taken from Redmon’s personal website, but both Redmon and Liu ran their 
algorithms on a GeForce GTX Titan X. Immediately we see that YOLOv1 labeled “Old 
YOLO” is as fast but still out of the race with the lowest accuracy score. We see that 
YOLOv2 is overall faster and more accurate than SSD on the VOC 2007 dataset. YOLOv2 
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with an input size of 416x416 performs as accurately as SSD with 500x500 input 
dimension, but YOLOv2 runs at 67 FPS, whereas SSD500 runs at 19.  
 

 
Figure 17: Accuracy and Speed on VOC 2007. 

From Figure 17 we see that YOLOv2 is exceptionally fast. There is also the performance of 
many regional based CNN methods plotted on the graph. We did not consider those 
algorithms in this review because while accurate, they are too slow to be of any use for 
real-time applications.  
The reason YOLOv2 is this fast is because it only computes 13 ∗ 13 ∗ 5 = 845 boxes for 
every input image, whereas SSD512 predicts 24564 bounding boxes.  
 

 
Figure 18: Performance of various algorithms on the COCO dataset. 

 
 
In Figure 18, we notice that YOLOv3 is not as fast as YOLOv2 but it achieves around 10 
points higher mAP than YOLOv2 and SSD. This makes sense given that YOLOv3 uses a 53 
layers CNN as feature extractor whereas YOLOv2 only uses a CNN with 19 layers. YOLOv3 
also makes 10647 bounding box predictions for every image. Given an input image of size 
608x608, YOLOv2 performs with an accuracy of 48.1 mAP at 40 FPS. In comparison, 
YOLOv3 scores 57.9 in mAP, but runs at 20 FPS. However, YOLOv3 is still the superior 
algorithm because given an input image of only 320x320, it scores a higher mAP and runs 
at a higher FPS than YOLOv2 with an input of 608x608. 
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Figure 19: Tradeoff between speed/accuracy of different algorithms on the COCO 2015 dataset. 

 
We see that YOLOv3 achieve accuracy that tops the best of every other detector while 
running at a fraction of their speed under the mAP at 0.5 IoU metric. We also notice that 
YOLOv3 does not perform as well under the new COCO metric (average AP between 0.5 
and 0.95 IoU). To be fair, variations of SSD also experienced a significant drop in 
accuracy. Yet, YOLOv3 is still many points more accurate than the SSD variants. In fact, 
YOLOv3 is more accurate and faster than certain configurations of RetinaNet. For 
RetinaNet to increase its accuracy to 37.8 mAP, its inference time rises to 198ms, which is 
almost 4 times as slow as YOLOv3 that predicts at a mAP of 33.0 in 51ms. 

Conclusion 
In this report, we explored YOLO and SSD algorithms in depth. Specifically, we observed 
how the simplistic YOLO algorithm gradually evolved into a model that resembles SSD. We 
also noted the architectural differences that give each algorithm their edge when it comes 
to the speed and accuracy tradeoff. We concluded that for real-time applications, the 
superior algorithm is YOLOv3 due to its unmatched accuracy (amongst the single stage 
detectors) and relatively higher FPS.  
 
The optimal configuration for real-time object detection is going to depend on the 
embedded system on which the project is built. The most crucial specification is with the 
GPU. Not only are we talking about the number of cores, bandwidth, and GPU clock 
speed, we also have to be careful on the size of the model as memory is probably going to 
be the limiting factor. SSD512 returning 24564 bounding boxes is going to have weights 
that will blow up the RAM on any microprocessor. 
 
Following this report, my objective remains the same: to build an embedded object 
detection system for autopilot applications. I am still going to run the model on an NVIDIA 
Jetson Nano. I can envision myself reducing the size of the input images and maybe even 
modify the model by taking out some layers to reduce its dimensionality.  
 
As a plan B, I am thinking of bringing one or two additional Coral Edge TPU to the table to 
accelerate the computation, but in a TensorFlow Lite framework. 
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