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Introduction 

In recent years, deep learning has been actively applied in various fields including medical 

imaging, autonomous driving, and social media services. The development of sensors and GPU 

along with deep learning models has accelerated research into autonomous vehicles based on 

deep neural network architectures. An autonomous vehicle with self-driving capability without 

human intervention must accurately detect other cars, pedestrians, and different traffic signs in 

real time to ensure safe and correct control decisions. To detect such objects, various sensors 

such as cameras, lidars, and radio detectors are generally installed on autonomous cars. Among 

these sensors, the camera sensor accurately identifies objects based on texture and color features 

and is more cost-effective than other sensors. In particular, object detection using cameras is 

becoming more and more important in the industry as it achieves a higher level of accuracy than 

the human eye in terms of object detection, and consequently it has become an essential method 

in autonomous navigation systems. 

 

A real-time object detection algorithm for autonomous vehicles should satisfy two conditions. 

First, it requires a high detection accuracy of objects on the road. Second, a real-time inference 

speed is essential for rapid response. Deep-learning based object detection algorithms, which are 

indispensable in autonomous vehicles, can be classified into two categories: two-stage and one-

stage detectors. Two-stage detectors, such as Faster R-CNN and R-FCN, conduct a first stage of 

region proposal generation, followed by a second stage of object classification and bounding box 

regression. These methods are generally more accurate but have longer inference speed. From an 

analytical point of view, these algorithms are, while accurate, very computationally intensive, 

such that they are too slow for real-time applications, and simply do not run on embedded 
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systems. One-stage detectors, such as SSD and YOLO, on the other hand, conduct object 

classification and bounding box regression concurrently without a region proposal stage. These 

methods are faster, but achieves slightly lower accuracy.  

 

At the beginning of the semester, I fixed the objective of building an autopilot system that could 

detect objects from the point of view of a self-driving car. Specifically, I wanted to build and 

train a model that will be used for autonomous driving. As it was concluded in my literature 

review, the superior algorithm for real-time object detection is YOLOv3. It scores 10 point 

higher in mAP-50 and runs three times faster than competitor SSD.  

The rest of this report is organized as follows. In the next section, I will briefly go over the 

previously studied YOLO algorithm. I will summarize the evolution of the algorithm and 

highlight some of the key differences between each generation. Following that section, I will 

present the specific procedures I used to build a YOLOv2 and a YOLOv3 model. This section 

will shed light on the datasets I used, the classifier backbone I chose, and the training steps. To 

conclude the report, I will discuss the significance of observations and add my interpretation of 

the trade-off between speed and accuracy to validate the theories studied in the literature review.  
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Summary of studied techniques 

YOLO 

YOLO’s architecture looks like any other CNN. The network comprises of 24 convolutional 

layers followed by two fully connected layers. The alternating use of 1x1 reduction layers to 

reduce the depth of the features space followed by a 3x3 convolutional layer was inspired by the 

GoogLeNet (Inception) model [1].  

 
Figure 1: YOLO architecture 

As we have seen in the literature review, YOLO detects objects by dividing an input image into a 

8x8 grid where each grid cell predicts only one bounding box. The feature map of the YOLO 

output layer outputs bounding box coordinates, object class, and a class confidence score for 

each of the predicted bounding boxes, hence enabling YOLO to detect multiple objects with a 

single inference. Therefore, the time it takes to make an inference is much lower than that of 

two-staged methods.  
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Figure 2: YOLO detecting Santas. 

However, owing to the processing of the grid unit and limited bounding boxes, localization 

errors are large and the accuracy is not top tier, especially for objects that are close to each other. 

As illustrated in Figure 2, there are nine Santas in the lower left corner, but YOLO can only 

detect five. Thus, YOLO is unsuitable for autopilot applications.  

YOLOv2 

To address these problems, YOLOv2 was proposed. YOLOv2 is the second version of YOLO 

with the objective of improving the detection accuracy significantly while making it faster.  
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Figure 3: The fully connected layers in YOLO are removed. 

Initially, YOLO makes arbitrary guesses on the shape of the bounding boxes. These guesses may 

work well for some objects but badly for others. In the real-life domain, the bounding boxes are 

not arbitrary. Cars have very similar shapes and pedestrians have similar aspect ratios. To 

remedy this problem, Redmon et al ran k-means clustering to find five anchor boxes that have 

the best coverage for the training data.  

Furthermore, the fully connected layers that predict the bounding boxes are replaced with three 

3x3 convolutional layers that form a passthrough module that brings features from a higher 

resolution layer directly to the detector. This change allows YOLOv2 to detect some of the 

smaller objects. 

 
Figure 4:YOLOv2 architecture featuring a passthrough layer. 
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To further improve the accuracy, YOLOv2 introduces batch normalization at every convolution 

layer and a high resolution classifier by retuning the classifier with 448x448 pictures. However, 

the detection accuracy for small or dense objects is still low. Therefore, YOLOv2 is may not be 

suitable for autonomous driving applications, where traffic signs and lights may be small. 

YOLOv3 

 
Figure 5: YOLOv3 architecture. 

 
To overcome the disadvantages of YOLOv2, YOLOv3 was proposed. YOLOv3 is built on top of 

a new feature extractor network, named Darknet-53. It is a hybrid of successive 3x3 and 1x1 

convolutional layers and residual network (ResNet). YOLOv3 applies residual blocks to solve 

the vanishing gradient problem of deep networks and uses an up-sampling and concatenation 

method that preserves fine-grained features for small object detection. It is done by going back 
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by two layers, up-sampling by 2 and concatenating the previous layers. The most salient feature 

is the detection at three different scales in a similar manner that is used in a feature pyramid 

network. YOLOv3 applies 1x1 kernels on feature maps at 3 different places in the network. At 

those 3 places, the dimensions of the input image get downsampled, respectively, by 32, 16, and 

8. This allows YOLOv3 to detect objects with various sizes. To be more specific, the YOLOv3 

network takes an input image and outputs bounding box coordinates, objectness score, and class 

scores from three detection layers. The predictions made at all three layers are concatenated and 

processed by non-maximum suppression. Because YOLOv3 is a fully convolutional network 

consisting only of small-sized convolution filers of 1x11 and 3x3, the inference speed is as fast 

as YOLOv2. Therefore, in terms of the trade-off between accuracy and speed, YOLOv3 is the 

most suitable for autopilot applications. In fact, it is widely used in research.  

Tiny-YOLOv3 

Another interesting algorithm for real-time object detection is a derivative of YOLOv3. It is 

often not considered as a state-of-the-art model as its accuracy drops by about 20 mAP on the 

MS COCO Dataset in comparison with YOLOv3. Tiny-YOLOv3 has a reduced number of 

convolutional layers. Its basic structure has only 7 convolutional layers, and features are 

extracted by using a small number of 1x1 and 3x3 convolutional layers. Tiny-YOLOv3 uses a 

pooling layer instead of YOLOV3’s convolutional layer with a step size of 2 to achieve 

dimensionality reduction.  
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Figure 6:Tiny-YOLOv3 architecture. 

With these changes, the model is about 10 times faster and lighter than YOLOv3. I am curious 

about the performance of Tiny-YOLOv3 as it is probably the only YOLO that can run in real 

time on cheap embedded systems.   
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Methodology 

Tools  

The main programming languages used to build this project is Python 3.7. The reason for that is 

because it is well documented and compatible with many machine learning frameworks, such as 

TensorFlow 2.0, PyTorch, and Keras. I did not end up using any of these frameworks, however, 

as AlexeyAB did a terrific job at building DarkNet in C and his work is now used by many. The 

rest of the code is written in Python for its ease of use and prototyping speed.  

 

Due to the large number of data that needed to be processed, I executed most of the heavier code 

on a Google Colab notebook. The hardware I was lent had these specs: 

- CPU: Single Core Hyperthreaded Xeon Processors @2.3GHz 

- RAM: 13GB 

- GPU: NVIDIA Tesla K80, 2496 CUDA cores, 12GB GDDR5 VRAM 

The operating system is a Ubuntu 18.04.  

Dataset 

Darknet-53 is the backbone feature extractor used in the YOLOv3 paper. Darknet-53 is pre-

trained on ImageNet 1000 class classification. 

 
Since the objective of this project is to explore autonomous driving, I chose to train YOLOv3 on 

the Berkeley DeepDrive (BDD100k) Dataset. The BDD100k dataset contains videos from 

diverse locations around the United States, in a wide range of weather conditions and settings 

such as, rainy, overcast, sunny, at night, and during the day. Most importantly, for this project, 
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this dataset includes a hundred thousand still frames extracted from these videos along with 

bounding boxes and labels for 10 classes of objects, segmentation, and lane lines. 

And these are the classes:  

Classes 

Traffic light Truck 

Traffic sign Rider 

Car Bike 

Person Motor 

Bus Train 

 

  

Figure 7: Statistics of different types of objects. 

The training, validation, and testing sets were split in a ratio of 7:1:2, but because there were 

some missing labels, I ended up with a dataset that looked like this: 

 Number of Images 

Training 69 863 

Validation 10 000 

Testing 20 000 

 



 14 

The enormous size of these datasets was the reason I needed to lend a GPU from Google. 

Evaluation criteria 

For real-time applications, such as autonomous driving, inference speed and quality of detections 

are the two most important metrics. Inference speed is the time it takes for a trained neural 

network to apply its capabilities to infer information about new data. To collect that information, 

the execution time will be printed out for every input image. To be more precise, the average 

time taken to infer 10000 images will be recorded. The inverse of this quantity is FPS. As for 

quality of detection, it will be measured in terms of mean average precision (mAP) on the testing 

set.  

Implementation 

CUDA 

The GPU that I was lent is a NVIDIA Tesla K80. To be able to use it, I needed to make sure that 

I installed the right version of cuDNN for the right version of CUDA. To check the CUDA 

release version on Google Colab, I run 

/usr/local/cuda/bin/nvcc --version 

 Because CUDA 10.0 is preinstalled on the Google Colab runtime, I downloaded the 

corresponding version of cuDNN from the NVIDIA website and uploaded it on my Google 

Drive. I then unzipped the cuDNN files from My Drive directly to the CUDA folder in the VM: 

tar -xzvf gdrive/My\ Drive/cuDNN/cudnn-10.0-linux-x64-v7.5.0.56.tgz -

C /usr/local/ 

Darknet 

As mentioned above, the backbone feature extractor that was used is a slightly modified version 

of the Darknet found at https://github.com/AlexeyAB/darknet/. It is an open source neural 
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network framework written in C and CUDA. It is easy to install and supports GPU computations. 

To build darknet, I simply run: 

cd darknet && make 

 
Pre-trained weights to the backbone network is readily downloadable using the command  

wget https://pjreddie.com/media/files/darknet53.conv.74 

Image Acquisition 

The images from the BDD dataset are downloadable with a student account. For this project, I 

only needed  

- bdd100k_images.zip 

- bdd100k_labels_release.zip.  

The BDD dataset has its own labelling and it is not compatible with the format of Darknet. Thus, 

some processing needs to be done to extract the relevant information for retraining. 

Image Preparation 

In order to reformat BDD labels for darknet, I used a function provided by sanwong15. The 

script resizes the bounding boxes’ dimensions and converts the labels from the .json file to a .txt 

file for each image, formatted in the correct darknet format.  

The scripts are found in the Annexes. 

Configuration 

The configuration file YOLOv3_BDD.cfg contains the architecture of YOLOv3. We find the 

implementation of each layer in the backbone Darknet as well as the YOLOv3 fully connected 

layers. For training, we set the batch size to 64 and subdivisions to 16, but for validation and 

evaluation, we set batch size and subdivisions to 1.  
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I created a file BDD.data that references the 10 classes used for training, the training, validation 

and test files, the list of names, as well as a location where backups of the training weights will 

be saved. BDD.data is referenced in the Annexes. 

Loading Dataset 

Since I worked on Google Colab, the only way to use the dataset was to upload a zipped folder 

containing each set of images to the VM. To unzip the folders, I run: 

unzip /content/images.zip -d /content/yolov3/ 
 
Training 

The training of the fully connected layers started with random weights and was done in 35000 

iterations with a fixed learning rate of 0.0001, a batch size of 64 and subdivisions of 16. I used 

the usual momentum of 0.9 and a decay of 0.0005 for backpropagation. For this project, the IoU 

threshold was set to 0.75 for all classes. The weights were backed up at every 1000 iterations in a 

backup folder for validation. To start the training, I run:  

./darknet detector train cfg/BDD.data cfg/YOLOv3_BDD.cfg darknet53.conv.74 

Because Google Colab only allows a maximum continuous runtime of 12h, I save the training 

weights in a backup folder on my Google Drive, so I can resume training 12h later. 

Evaluation 

For validation, I first run the command: 

./darknet detector valid cfg/BDD.data cfg/YOLOv3_BDD.cfg 

YOLOv3_BDD.weights 

Then, I used a script that computes the bounding box IoU to calculate the mAP for each class 

that can be found on https://github.com/ucbdrive/bdd-data by running the command: 

python evaluate.py det gt_bdd_val.json ../results/bdd_results.json 
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For the testing set, I run the same commands, but change a line in the BDD.data file to indicate 

the use of the testing set rather than the validation set. Because the testing set is not annotated, it 

had to be evaluated on the BDD evaluation server.  

Execution 

For detection on a single image, I run the command 

./darknet detector test cfg/BDD.data cfg/YOLOv3_BDD.cfg YOLOv3_BDD.weights 

data/example.jpg 

It takes an input image from the data/folder and runs the test function to make predictions on 

the image. It then saves the image in a .jpg file. Because I am working on Google Colab, I used 

some helper functions to interface and display images on Google Colab. The imShow function 

can be found in the Annexes. To display the predictions on the VM, I run the command: 

imShow('predictions.jpg') 

 

Figure 8: Detection example. 
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Experimental Results 

Example Detection 

Take the image in Figure 8, on Google Colab, these are the detection results: 

 

Figure 9: Example scores. 

The objects are ranked in order of confidence score. Although I did not display the confidence 

score on each predicted bounding box, we see that even when objects are partially hidden, the 

detection still works. In fact, the bounding box annotations follow the object very closely.  

Inference Speed 

For inference speed, I measured the time YOLOv3 took to make predictions on the 10000-image 

validation set. It took 312 seconds to finish the task, which means that on average, it needs about 

0.03 seconds to infer an image, as we can see from Figure 10. These numbers translate to about 

32 FPS on the NVIDIA Tesla K80, which runs at around 2.91 teraflops. If I were to build this 

detection system on an embedded NVIDIA Jetson Nano that runs at 472 gigaflops, I would 

expect an FPS of 5.2. This model would not run in real-time on embedded systems. 
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Figure 10: Detection Time. 

Quality of Detection 

After uploading the .json file containing the results, I get an mAP of 15.44, which is, quite 

frankly, pretty low considering the high quality detection shown in Figure 8.  

1. AP : 8.37 (bike)   
2. AP : 32.82 (bus)   
3. AP : 32.96 (car)   
4. AP : 3.53 (motor)   
5. AP : 12.52 (person)   
6. AP : 6.22 (rider)   
7. AP : 6.06 (traffic light)   
8. AP : 19.46 (traffic sign)   
9. AP : 0.00 (train)   
10. AP : 32.46 (truck)   
11. [8.368295420802772, 32.82022967768842, 32.962338308273596, 3.528317480713093, 12.521039

55706777, 6.221396343004272, 6.064563796458698, 19.1457189144825003, 0.0, 32.4578699458
3501]    

12.    
13. 8.37 32.82 32.96 3.53 12.52 6.22 6.06 19.46 0.00 32.46   
14.    
15. mAP 15.44  
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It seems like the way the mAP was calculated here is by summing the AP for each class and 

dividing over the number of classes. This number seems inexact, as there are many more 

instances of cars than trains in the dataset. 

Train Detection 

What caught my eye first is the 0.00 AP on detecting trains. Looking back at Figure 7, we see 

that there are only 179 instances of trains in the whole 100000 dataset, whereas cars occur 

1021857 times, as expected for an autonomous driving dataset. So, I ran detection on a couple of 

photos containing trains and these are the results: 

  

Figure 11: Train detection. 

In Figure 11, on the left, there is a cargo train in the background, but the model only detects the 

people in front of the train. This tells us that the huge class imbalance in the dataset makes the 

model unable to detect trains and, in fact, as illustrated in the image on the right, the model 

thinks that the very obvious train is a car with a confidence score of 64%.  
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Figure 12: Detection in crowded area. 

People Detection 

Moving on to people detection, in Figure 12, we see that on the center left, a lot of people are 

detected, but in higher density zones, it only boxes the person standing at the front and leaves the  

others undetected. As we can see on the center right, as people become smaller than a certain 

threshold, the model does not detect them, but that might have to do with the IoU threshold of 

0.75 that I used to lower the numbers of false positives. It also seems like the maximum distance 

for a person to be detected is the distance of a street intersection. This should also account for the 

low AP of 12.52 on people detection, as in many cases, the roads are empty, but the streets are 

filled with pedestrians in the distance.  
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Figure 13: Original photo of crowded area. 

In Figure 14, we see that our model confuses two people walking side by side as one person. 

Personally, I do not think that this is a very serious problem, because it was able to detect that 

there were, in fact, someone in front of the car, and that it should probably not run over that 

person. But this case also lowers the mAP. I would even argue that this detector detects objects 

that are tough for humans to discern. Still in Figure 14, we see that there is a person detection on 

the left, but I can barely see a shadow. 

 

Figure 14: Two people confused as one. 
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Nighttime Detection 

As for detection at night, the model works very well in low light situations. We see from Figure 

15 that the model detected two people on the left out of the three that I can see. And, on the right, 

it drew boxes around many individual pedestrians, but again, there is an instance where it 

predicted two people as one person. 
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Figure 15: Nighttime detection. 

Detection with Motion Blurring 

Since the camera is onboard of a car in motion, the still images are sometimes blurred, especially 

in low light situations. In Figure 16, I cannot tell if there is a car on the left (confidence score of 

50%), so it might be a false positive, but in general, it does not seem like bigger objects are 

affected a lot by the blurring. Smaller objects might be affected more, because a blurring 

displacement on smaller objects have bigger impact on its image.  
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Figure 16: Motion blur on the image. 
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Figure 17: A bit of blurring. 

Traffic Lights Detection 

Since there are 265906 instances of annotated traffic lights in the dataset, we see that in every 

figure so far, every traffic light were detected, independent of the angle. However any spot of 

green, yellow, or red can be misinterpreted as a traffic light. This happens especially at night, 

when any reflective sign in the distance can be seen as a traffic light. Take Figure 16 for 

example, clearly a green reflective traffic sign got predicted as a traffic light (confidence score 

51%). This is probably the main reason for the low AP of 6.06 for traffic lights detection. In 

Figure 19, we see exactly that on the top left corner. 
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Figure 18: Raindrops on the windshield. 

 

Figure 19: Effective detection of distant traffic lights. 

Detections in the rain 

Since cars drive even when it pours, images captured by the camera can be blocked by rain 

drops. And sometimes, rain drops on the windshield can make the camera focus on the 
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windshield rather than in the distance, as seen in Figure 18 and 19. Our model still seems to 

work. 

 

Figure 19: Out of focus image 

Bike, Rider, and Motorcycle Detection 

Bikes, riders, and motorcycles have low AP. From Figure 7, we see that each of these classes 

have under 10000 instances (versus the 1000000+ instances for cars). The class imbalance is 

very strong and even when we feed it an image of a motorcycle in the center, it does not 

recognize it.  

 

Figure 20: Motorcycle not detected. 
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It is a little better for bikes, but not really.  

 

Figure 21: Bike detection. 

Car Detection 

Since cars are the most prominent objects in the dataset (as illustrated in Figure 7), we would 

expect cars to have a higher AP than 32.96. The truth is, cars are usually far from one another, 

and the many cars that we see are too small for the detector. Or sometimes, because of their 

headlights, it is difficult to make out the shape of cars around it. Take Figure 22 for example, 

there is clearly a car in the center of the photo that has not been detected. The reason for that is 

because its tail lights are dimmer than the head lights of the incoming cars.  
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Figure 22: Blinded by lights 

Data Augmentation 

In general, it seems like 100:1 class imbalances create a lot of problems, which accounts for the 

overall low mAP. To combat class imbalance, I am thinking of different ways of data 

augmentation, such as adding more images of rarer classes to the training set, and cropping, and 
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rotating existing images of them. I could also play with the saturation and exposure levels of 

those images. Since we are training with 70000 images, I can take out images consisting mainly 

of cars. The fact that I stopped the training after 35000 iterations due to the limit on time also 

means that I was not able to reach optimal performance. It is still very interesting to see that cars, 

trucks, and buses performed the best, as they are probably the most distinct objects on the road 

(they are generally well separated from one another, unlike pedestrians). 
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Conclusion 

In this experimental study, I have closely examined YOLOv3 for the purpose of real-time object 

detection in the setting of autonomous driving. To get to this point, I studied the most popular 

real-time object detection algorithms such as SSD and the different versions of YOLO and I even 

wrote a literature review to compare their architectural differences give them advantages in 

respect to each other. The review concluded that YOLOv3 was by far the faster and more 

accurate model to work with. 

In fact, we have seen how YOLOv3 achieves low AP for pedestrians who appear small or in 

dense areas. The main problem with YOLOv2 was its accuracy at detecting small objects and 

YOLOv3 was supposed to have solved this. If we ran YOLOv2 on the same dataset, the AP 

would be even lower as most objects are small in those images. In their published papers, SSD 

had about the same accuracy as YOLOv2, but ran 3 times slower than YOLOv3, which means 

that we would expect an FPS of about 11, rendering it unfit for real-time detection, even on a 

$5000 GPU. As for YOLOv1, it lacked in accuracy and localization error. It is not for nothing 

that the algorithm evolved to YOLOv3. 

A high accuracy and a real-time inference speed are extremely important for the safety of 

autonomous vehicles. On the BDD100k dataset, despite huge class imbalances, this YOLOv3 

model was able to reach a mAP of 15.44, which I believe to be not very representative. For the 

car class, it reaches an AP of 32.96, because many cars were far away and their head lights tend 

to diminish the observability of cars around it. As for objects in rarer classes, class imbalance 

causes our model to not detect them. For pedestrians, we have seen how they only appear when 

they are a street intersection away from the camera, and the distance is further, the detector 

would not detect them.  
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To tackle these problems, I suggested different data augmentation techniques, but there are 

certainly many other courses of action to take. One of them would be to start with a more 

balanced dataset, like the KITTI dataset. Although I did not have the time to train SSD, 

YOLOv1, and YOLOv2 on the BDD100k dataset to compare with YOLOv3, this project was 

still very exciting. For future works, I want to add real-time object detection on low cost 

embedded systems. Specifically, I want to train a Tiny-YOLOv3 model. As stated previously, 

Tiny-YOLOv3 is 10 times lighter than YOLOv3, which means that in general, we expect it to 

run around 10 times faster. That would be a huge advantage for embedded systems. As estimated 

in a section above, the inference speed of this YOLOv3 would probably only reach 5.2 FPS on 

an NVIDIA Jetson Nano (costs $99), but a good guess is that Tiny-YOLOv3 will be able to run 

10 times faster, which would put the FPS in the order of 50. It is in fact reported on the NVIDIA 

developer website that it can run inference up to 25 FPS, hence, making it eligible for real-time 

applications.  
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Annexes 

YOLO Model 

1. batch = 4, time_steps = 1, train = 1    
2.    layer   filters  size/strd(dil)      input                output   
3.    0 conv     32       3 x 3/ 1    416 x 416 x   3 ->  416 x 416 x  32 0.299 BF   
4.    1 conv     64       3 x 3/ 2    416 x 416 x  32 ->  208 x 208 x  64 1.595 BF   
5.    2 conv     32       1 x 1/ 1    208 x 208 x  64 ->  208 x 208 x  32 0.177 BF   
6.    3 conv     64       3 x 3/ 1    208 x 208 x  32 ->  208 x 208 x  64 1.595 BF   
7.    4 Shortcut Layer: 1   
8.    5 conv    128       3 x 3/ 2    208 x 208 x  64 ->  104 x 104 x 128 1.595 BF   
9.    6 conv     64       1 x 1/ 1    104 x 104 x 128 ->  104 x 104 x  64 0.177 BF   
10.    7 conv    128       3 x 3/ 1    104 x 104 x  64 ->  104 x 104 x 128 1.595 BF   
11.    8 Shortcut Layer: 5   
12.    9 conv     64       1 x 1/ 1    104 x 104 x 128 ->  104 x 104 x  64 0.177 BF   
13.   10 conv    128       3 x 3/ 1    104 x 104 x  64 ->  104 x 104 x 128 1.595 BF   
14.   11 Shortcut Layer: 8   
15.   12 conv    256       3 x 3/ 2    104 x 104 x 128 ->   52 x  52 x 256 1.595 BF   
16.   13 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF   
17.   14 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF   
18.   15 Shortcut Layer: 12   
19.   16 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF   
20.   17 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF   
21.   18 Shortcut Layer: 15   
22.   19 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF   
23.   20 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF   
24.   21 Shortcut Layer: 18   
25.   22 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF   
26.   23 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF   
27.   24 Shortcut Layer: 21   
28.   25 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF   
29.   26 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF   
30.   27 Shortcut Layer: 24   
31.   28 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF   
32.   29 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF   
33.   30 Shortcut Layer: 27   
34.   31 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF   
35.   32 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF   
36.   33 Shortcut Layer: 30   
37.   34 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF   
38.   35 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF   
39.   36 Shortcut Layer: 33   
40.   37 conv    512       3 x 3/ 2     52 x  52 x 256 ->   26 x  26 x 512 1.595 BF   
41.   38 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF   
42.   39 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF   
43.   40 Shortcut Layer: 37   
44.   41 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF   
45.   42 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF   
46.   43 Shortcut Layer: 40   
47.   44 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF   
48.   45 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF   
49.   46 Shortcut Layer: 43   
50.   47 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF   
51.   48 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF   
52.   49 Shortcut Layer: 46   
53.   50 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF   
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54.   51 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF   
55.   52 Shortcut Layer: 49   
56.   53 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF   
57.   54 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF   
58.   55 Shortcut Layer: 52   
59.   56 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF   
60.   57 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF   
61.   58 Shortcut Layer: 55   
62.   59 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF   
63.   60 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF   
64.   61 Shortcut Layer: 58   
65.   62 conv   1024       3 x 3/ 2     26 x  26 x 512 ->   13 x  13 x1024 1.595 BF   
66.   63 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF   
67.   64 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF   
68.   65 Shortcut Layer: 62   
69.   66 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF   
70.   67 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF   
71.   68 Shortcut Layer: 65   
72.   69 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF   
73.   70 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF   
74.   71 Shortcut Layer: 68   
75.   72 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF   
76.   73 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF   
77.   74 Shortcut Layer: 71   
78.   75 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF   
79.   76 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF   
80.   77 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF   
81.   78 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF   
82.   79 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF   
83.   80 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF   
84.   81 conv     45       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x  45 0.016 BF   
85.   82 yolo   
86. [yolo] params: iou loss: mse (2), iou_norm: 0.75, cls_norm: 1.00, scale_x_y: 1.00   
87.   83 route  79                                 ->   13 x  13 x 512    
88.   84 conv    256       1 x 1/ 1     13 x  13 x 512 ->   13 x  13 x 256 0.044 BF   
89.   85 upsample                 2x    13 x  13 x 256 ->   26 x  26 x 256   
90.   86 route  85 61                              ->   26 x  26 x 768    
91.   87 conv    256       1 x 1/ 1     26 x  26 x 768 ->   26 x  26 x 256 0.266 BF   
92.   88 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF   
93.   89 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF   
94.   90 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF   
95.   91 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF   
96.   92 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF   
97.   93 conv     45       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x  45 0.031 BF   
98.   94 yolo   
99. [yolo] params: iou loss: mse (2), iou_norm: 0.75, cls_norm: 1.00, scale_x_y: 1.00   
100.   95 route  91                                 ->   26 x  26 x 256    
101.   96 conv    128       1 x 1/ 1     26 x  26 x 256 ->   26 x  26 x 128 0.044 BF 

  
102.   97 upsample                 2x    26 x  26 x 128 ->   52 x  52 x 128   
103.   98 route  97 36                              ->   52 x  52 x 384    
104.   99 conv    128       1 x 1/ 1     52 x  52 x 384 ->   52 x  52 x 128 0.266 BF 

  
105.  100 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF 

  
106.  101 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF 

  
107.  102 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF 

  
108.  103 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF 
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109.  104 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF 
  

110.  105 conv     45       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x  45 0.062 BF 
  

111.  106 yolo   
112. [yolo] params: iou loss: mse (2), iou_norm: 0.75, cls_norm: 1.00, scale_x_y: 1.0

0   
113. Total BFLOPS 65.355    
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Extracting Labels 

This script formats labels from the Berkeley DeepDrive dataset to standard YOLO labels. 
#!/usr/bin/python 
f = open(image_label_txt, "w+") 
import json 
import csv 
 

json_data = open('/home/user/Desktop/bdd100k_data/bdd100k/labels/ -- ') 
print("----- LOADING JSON -----") 
data = json.load(json_data) 
 
# Construct a dictionary 
class_dict = {} 
 
num_of_images = len(data) 
# initialze current_index 
latest_class_label = 0 #Only add one when it is a new class 
 
# List of category that need to be ignorded 
list_of_category_to_ignore = ["drivable area", "lane"] 
 

# Fill out the dictionary 
for i in range(num_of_images): 
    print("[STEP 1] =============  image number i: ", i) 
    print("latest_class_label: " , latest_class_label) 
    current_image = data[i] 
    image_name = current_image['name'] 
    print("image_name: ", image_name) 
    # Create a Text file for each image 
    image_label_txt = str(image_name[:-4]) + ".txt" 
    print("image_label_txt: ", image_label_txt) 
 
 

    num_of_object_in_image = len(current_image['labels']) # In the type of dict 
 
    print('num_of_object_in_image: ' , num_of_object_in_image) 
    # For each object in the current image 
    for j in range(num_of_object_in_image): 
        print("[STEP 2] ============== object number: ", j) 
        current_object = current_image['labels'][j] 
        current_object_label = current_object['category'] 
        print("current_object_label:   ", current_object_label) 
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        if current_object_label in list_of_category_to_ignore: 
            print("The current object label is in the ignore list") 
        else: 
            # Get the X-Y info 
            y1 = current_object['box2d']['y1'] 
            x2 = current_object['box2d']['x2'] 
            x1 = current_object['box2d']['x1'] 
            y2 = current_object['box2d']['y2'] 
            image_width = 1280 
            image_height = 720 
 
            # x-y => Center of the box2d 
            bbox_x = (x1 + x2)/2 
            bbox_y = (y1 + y2)/2 
 
            bbox_x_normalized = bbox_x / image_width 
            bbox_y_normalized = bbox_y / image_height 
 
            bbox_width = abs(x1-x2) 
            bbox_height = abs(y1-y2) 
 
            bbox_width_normalized = bbox_width / image_width 
            bbox_height_normalized = bbox_height / image_height 
 
            print("Center X-Y & Width-Height") 
            print(bbox_x, bbox_y, bbox_width, bbox_height) 
            print("NORMALIZED Center X-Y & Width-Height") 
            print(bbox_x_normalized, bbox_y_normalized, bbox_width_normalized, 
bbox_height_normalized) 
 

            # Check if current_object_label is already in the dictionary (Add ) 
            if class_dict.has_key(current_object_label): 
                print("current_object_label is already in the class_dict") 
                # show current size of class_dict 
                print("len(class_dict):  ", len(class_dict)) 
            else: 
                print("New Class: add to class_dict") 
                print("label_to_be_added: ", current_object_label) 
                class_dict[current_object_label] = latest_class_label 
                # Update label count 
                latest_class_label = latest_class_label + 1 
                # show current size of class_dict 
                print("len(class_dict):  ", len(class_dict)) 
 
            # Get the corresponding label from the class dict 
            class_label_code = class_dict[current_object_label] 
            print("class_label_code: ", class_label_code) 



 39 

            # Prepare the line to be written down to txt file 
            line_to_be_written = str(class_label_code) + " " + str(bbox_x_normalized) 
+ " " + str(bbox_y_normalized) + " " + str(bbox_height_normalized) + " " + 
str(bbox_width_normalized) 
            print("line_to_be_written: ", line_to_be_written) 
            f.write(line_to_be_written + "\n") 
 

    f.close() 
    print("=== Show current Class Dict Collection ====") 
    print(class_dict.items()) 
    #input("Press Enter to continue...") 
 
 

print(" --- END OF CLASS DICT CONSTRUCT ---") 
print(class_dict.items()) 
 
# Save class dictionary to text file 
f = open("class_dict.txt","w") 
f.write( str(class_dict) ) 
f.close() 
 
# Save class dictionary to csv file 
w = csv.writer(open("class_dict.csv", "w")) 
for key, val in class_dict.items(): 
    w.writerow([key, val]) 
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Train/Val Dataset 

This script creates the training and validation sets.  
import pickle 
import os 
from os import listdir, getcwd 
from os.path import join 
 
# Here we need the directory of the training images 
train_images_dir = '/home/user/Desktop/bdd100k_data/bdd100k/images/100k/train' 
# Here we need the directory of the validation images 
val_images_dir = '/home/user/Desktop/bdd100k_data/bdd100k/images/100k/val' 
 
f = open("train.txt", "w+") 
 
for subdirs, dirs, files in os.walk(train_images_dir): 
    for filename in files: 
        if filename.endswith(".jpg"): 
            print("Yes") 
            train_image_path = os.path.join(train_images_dir, filename) 
            print(train_image_path) 
            f.write(train_image_path + "\n") 
f.close() 
 

f = open("val.txt", "w+") 
 
for subdirs, dirs, files in os.walk(val_images_dir): 
    for filename in files: 
        if filename.endswith(".jpg"): 
            print("Yes") 
            val_image_path = os.path.join(val_images_dir, filename) 
            print(val_image_path) 
            f.write(val_image_path + "\n") 
f.close() 
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Training Script 

Excerpt from the configuration file (.cfg) 
# Training 
batch=64 
subdivisions=16 
width=512 
height=512 
channels=3 
momentum=0.9 
decay=0.0005 
angle=0 
saturation = 1.5 
exposure = 1.5 
hue=.1 
 
learning_rate=0.0001 
burn_in=1000 
max_batches = 500200 
policy=steps 
steps=400000,450000 
scales=.1,.1 
 
 
BDD.data 

1. classes= 10   
2. train  = "/content/gdrive/My Drive/yolov3/cfg/train.txt"   
3. #valid  = "/content/gdrive/My Drive/yolov3/cfg/test.txt"   
4. valid = "/content/gdrive/My Drive/yolov3/cfg/val.txt"   
5. names = "/content/gdrive/My Drive/yolov3/cfg/BDD.names"   
6. backup = "/content/gdrive/My Drive/yolov3/backup/bdd100k"   

where BDD.names contains the 10 classes. 
 
train.txt, test.txt and val.txt contains the path to each image. 
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Validation Script. 

Taken from https://github.com/ucbdrive/bdd-data 

import argparse 
import copy 
import json 
import os 
from collections import defaultdict 
 
import os.path as osp 
 
import numpy as np 
from PIL import Image 
 

def parse_args(): 
    """Use argparse to get command line arguments.""" 
    parser = argparse.ArgumentParser() 
    parser.add_argument('task', choices=['seg', 'det', 'drivable']) 
    parser.add_argument('gt', help='path to ground truth') 
    parser.add_argument('result', help='path to results to be evaluated') 
    args = parser.parse_args() 
 
    return args 
 

def fast_hist(gt, prediction, n): 
    k = (gt >= 0) & (gt < n) 
    return np.bincount( 
        n * gt[k].astype(int) + prediction[k], minlength=n ** 2).reshape(n, n) 
 

def per_class_iu(hist): 
    ious = np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist)) 
    ious[np.isnan(ious)] = 0 
    return ious 
 

def find_all_png(folder): 
    paths = [] 
    for root, dirs, files in os.walk(folder, topdown=True): 
        paths.extend([osp.join(root, f) 
                      for f in files if osp.splitext(f)[1] == '.png']) 
    return paths 
 

def evaluate_segmentation(gt_dir, result_dir, num_classes, key_length): 
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    gt_dict = dict([(osp.split(p)[1][:key_length], p) 
                    for p in find_all_png(gt_dir)]) 
    result_dict = dict([(osp.split(p)[1][:key_length], p) 
                        for p in find_all_png(result_dir)]) 
    result_gt_keys = set(gt_dict.keys()) & set(result_dict.keys()) 
    if len(result_gt_keys) != len(gt_dict): 
        raise ValueError('Result folder only has {} of {} ground truth files.' 
                         .format(len(result_gt_keys), len(gt_dict))) 
    print('Found', len(result_dict), 'results') 
    print('Evaluating', len(gt_dict), 'results') 
    hist = np.zeros((num_classes, num_classes)) 
    i = 0 
    gt_id_set = set() 
    for key in sorted(gt_dict.keys()): 
        gt_path = gt_dict[key] 
        result_path = result_dict[key] 
        gt = np.asarray(Image.open(gt_path, 'r')) 
        gt_id_set.update(np.unique(gt).tolist()) 
        prediction = np.asanyarray(Image.open(result_path, 'r')) 
        hist += fast_hist(gt.flatten(), prediction.flatten(), num_classes) 
        i += 1 
        if i % 100 == 0: 
            print('Finished', i, per_class_iu(hist) * 100) 
    gt_id_set.remove(255) 
    print('GT id set', gt_id_set) 
    ious = per_class_iu(hist) * 100 
    miou = np.mean(ious[list(gt_id_set)]) 
    return miou, list(ious) 
 

def evaluate_drivable(gt_dir, result_dir): 
    return evaluate_segmentation(gt_dir, result_dir, 3, 17) 
 

def get_ap(recalls, precisions): 
    # correct AP calculation 
    # first append sentinel values at the end 
    recalls = np.concatenate(([0.], recalls, [1.])) 
    precisions = np.concatenate(([0.], precisions, [0.])) 
 
    # compute the precision envelope 
    for i in range(precisions.size - 1, 0, -1): 
        precisions[i - 1] = np.maximum(precisions[i - 1], precisions[i]) 
 
    # to calculate area under PR curve, look for points 
    # where X axis (recall) changes value 
    i = np.where(recalls[1:] != recalls[:-1])[0] 
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    # and sum (\Delta recall) * prec 
    ap = np.sum((recalls[i + 1] - recalls[i]) * precisions[i + 1]) 
    return ap 
 

def group_by_key(detections, key): 
    groups = defaultdict(list) 
    for d in detections: 
        groups[d[key]].append(d) 
    return groups 
 

def cat_pc(gt, predictions, thresholds): 
    """ 
    Implementation refers to https://github.com/rbgirshick/py-faster-rcnn 
    """ 
    num_gts = len(gt) 
    image_gts = group_by_key(gt, 'name') 
    image_gt_boxes = {k: np.array([[float(z) for z in b['bbox']] 
                                   for b in boxes]) 
                      for k, boxes in image_gts.items()} 
    image_gt_checked = {k: np.zeros((len(boxes), len(thresholds))) 
                        for k, boxes in image_gts.items()} 
    predictions = sorted(predictions, key=lambda x: x['score'], reverse=True) 
 

    # go down dets and mark TPs and FPs 
    nd = len(predictions) 
    tp = np.zeros((nd, len(thresholds))) 
    fp = np.zeros((nd, len(thresholds))) 
    count = 0 
    count_bg = 0 
    for i, p in enumerate(predictions): 
        box = p['bbox'] 
        ovmax = -np.inf 
        jmax = -1 
        try: 
            gt_boxes = image_gt_boxes[p['name']] 
            gt_checked = image_gt_checked[p['name']] 
        except KeyError: 
            gt_boxes = [] 
            gt_checked = None 
 

        if len(gt_boxes) > 0: 
            # compute overlaps 
            # intersection 
            ixmin = np.maximum(gt_boxes[:, 0], box[0]) 
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            iymin = np.maximum(gt_boxes[:, 1], box[1]) 
            ixmax = np.minimum(gt_boxes[:, 2], box[2]) 
            iymax = np.minimum(gt_boxes[:, 3], box[3]) 
            iw = np.maximum(ixmax - ixmin + 1., 0.) 
            ih = np.maximum(iymax - iymin + 1., 0.) 
            inters = iw * ih 
 
            # union 
            uni = ((box[2] - box[0] + 1.) * (box[3] - box[1] + 1.) + 
                   (gt_boxes[:, 2] - gt_boxes[:, 0] + 1.) * 
                   (gt_boxes[:, 3] - gt_boxes[:, 1] + 1.) - inters) 
 
            overlaps = inters / uni 
            ovmax = np.max(overlaps) 
            jmax = np.argmax(overlaps) 
 
        for t, threshold in enumerate(thresholds): 
            if ovmax > threshold: 
                if gt_checked[jmax, t] == 0: 
                    tp[i, t] = 1. 
                    gt_checked[jmax, t] = 1 
                else: 
                    fp[i, t] = 1. 
            else: 
                fp[i, t] = 1. 
 

    # compute precision recall 
    fp = np.cumsum(fp, axis=0) 
    tp = np.cumsum(tp, axis=0) 
    recalls = tp / float(num_gts) 
    # avoid divide by zero in case the first detection matches a difficult 
    # ground truth 
    precisions = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) 
    ap = np.zeros(len(thresholds)) 
    for t in range(len(thresholds)): 
        ap[t] = get_ap(recalls[:, t], precisions[:, t]) 
 
    return recalls, precisions, ap 
 

def evaluate_detection(gt_path, result_path): 
    print("here",gt_path,result_path) 
    gt = json.load(open(gt_path, 'r')) 
    pred = json.load(open(result_path, 'r')) 
    cat_gt = group_by_key(gt, 'category') 
    cat_pred = group_by_key(pred, 'category') 
    cat_list = sorted(cat_gt.keys()) 
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    thresholds = [0.75] 
    aps = np.zeros((len(thresholds), len(cat_list))) 
    c = [] 
 
    for i, cat in enumerate(cat_list): 
        if cat in cat_pred: 
            r, p, ap = cat_pc(cat_gt[cat], cat_pred[cat], thresholds) 
            aps[:, i] = ap 
            print("AP : %.2f (%s)" %(ap*100, cat)) 
    aps *= 100 
    mAP = np.mean(aps) 
    return mAP, aps.flatten().tolist() 
 

def main(): 
    args = parse_args() 
 
    if args.task == 'drivable': 
        mean, breakdown = evaluate_drivable(args.gt, args.result) 
    elif args.task == 'seg': 
        mean, breakdown = evaluate_segmentation(args.gt, args.result, 19, 17) 
    elif args.task == 'det': 
        mean, breakdown = evaluate_detection(args.gt, args.result) 
 
    print(breakdown,"\n") 
    print(' '.join(['{:.2f}'.format(n) for n in breakdown])) 
    print('\nmAP {:.2f}'.format(mean)) 
 

if __name__ == '__main__': 
    main() 
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Helper Functions 

Scripts that were used to be more efficient on Google Colab. Thanks to Ivan Goncharov. 

1. #download files   
2. def imShow(path):   
3.   import cv2   
4.   import matplotlib.pyplot as plt   
5.   %matplotlib inline   
6.    
7.   image = cv2.imread(path)   
8.   height, width = image.shape[:2]   
9.   resized_image = cv2.resize(image,(3*width, 3*height), interpolation = cv2.INTER_CUBIC

)   
10.    
11.   fig = plt.gcf()   
12.   fig.set_size_inches(18, 10)   
13.   plt.axis("off")   
14.   #plt.rcParams['figure.figsize'] = [10, 5]   
15.   plt.imshow(cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB))   
16.   plt.show()   
17.      
18.      
19. def upload():   
20.   from google.colab import files   
21.   uploaded = files.upload()    
22.   for name, data in uploaded.items():   
23.     with open(name, 'wb') as f:   
24.       f.write(data)   
25.       print ('saved file', name)   
26. def download(path):   
27.   from google.colab import files   
28.   files.download(path)   
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YOLOv3: An Incremental Improvement
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Abstract

We present some updates to YOLO! We made a bunch

of little design changes to make it better. We also trained

this new network that’s pretty swell. It’s a little bigger than

last time but more accurate. It’s still fast though, don’t

worry. At 320 ⇥ 320 YOLOv3 runs in 22 ms at 28.2 mAP,

as accurate as SSD but three times faster. When we look

at the old .5 IOU mAP detection metric YOLOv3 is quite

good. It achieves 57.9 AP50 in 51 ms on a Titan X, com-

pared to 57.5 AP50 in 198 ms by RetinaNet, similar perfor-

mance but 3.8⇥ faster. As always, all the code is online at

https://pjreddie.com/yolo/.

1. Introduction
Sometimes you just kinda phone it in for a year, you

know? I didn’t do a whole lot of research this year. Spent
a lot of time on Twitter. Played around with GANs a little.
I had a little momentum left over from last year [12] [1]; I
managed to make some improvements to YOLO. But, hon-
estly, nothing like super interesting, just a bunch of small
changes that make it better. I also helped out with other
people’s research a little.

Actually, that’s what brings us here today. We have
a camera-ready deadline [4] and we need to cite some of
the random updates I made to YOLO but we don’t have a
source. So get ready for a TECH REPORT!

The great thing about tech reports is that they don’t need
intros, y’all know why we’re here. So the end of this intro-
duction will signpost for the rest of the paper. First we’ll tell
you what the deal is with YOLOv3. Then we’ll tell you how
we do. We’ll also tell you about some things we tried that
didn’t work. Finally we’ll contemplate what this all means.

2. The Deal
So here’s the deal with YOLOv3: We mostly took good

ideas from other people. We also trained a new classifier
network that’s better than the other ones. We’ll just take
you through the whole system from scratch so you can un-
derstand it all.
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Figure 1. We adapt this figure from the Focal Loss paper [9].
YOLOv3 runs significantly faster than other detection methods
with comparable performance. Times from either an M40 or Titan
X, they are basically the same GPU.

2.1. Bounding Box Prediction
Following YOLO9000 our system predicts bounding

boxes using dimension clusters as anchor boxes [15]. The
network predicts 4 coordinates for each bounding box, tx,
ty , tw, th. If the cell is offset from the top left corner of the
image by (cx, cy) and the bounding box prior has width and
height pw, ph, then the predictions correspond to:

bx = �(tx) + cx

by = �(ty) + cy

bw = pwe
tw

bh = phe
th

During training we use sum of squared error loss. If the
ground truth for some coordinate prediction is t̂* our gra-
dient is the ground truth value (computed from the ground
truth box) minus our prediction: t̂* � t*. This ground truth
value can be easily computed by inverting the equations
above.

YOLOv3 predicts an objectness score for each bounding
box using logistic regression. This should be 1 if the bound-
ing box prior overlaps a ground truth object by more than
any other bounding box prior. If the bounding box prior

1

https://pjreddie.com/yolo/
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Figure 2. Bounding boxes with dimension priors and location
prediction. We predict the width and height of the box as offsets
from cluster centroids. We predict the center coordinates of the
box relative to the location of filter application using a sigmoid
function. This figure blatantly self-plagiarized from [15].

is not the best but does overlap a ground truth object by
more than some threshold we ignore the prediction, follow-
ing [17]. We use the threshold of .5. Unlike [17] our system
only assigns one bounding box prior for each ground truth
object. If a bounding box prior is not assigned to a ground
truth object it incurs no loss for coordinate or class predic-
tions, only objectness.

2.2. Class Prediction
Each box predicts the classes the bounding box may con-

tain using multilabel classification. We do not use a softmax
as we have found it is unnecessary for good performance,
instead we simply use independent logistic classifiers. Dur-
ing training we use binary cross-entropy loss for the class
predictions.

This formulation helps when we move to more complex
domains like the Open Images Dataset [7]. In this dataset
there are many overlapping labels (i.e. Woman and Person).
Using a softmax imposes the assumption that each box has
exactly one class which is often not the case. A multilabel
approach better models the data.

2.3. Predictions Across Scales
YOLOv3 predicts boxes at 3 different scales. Our sys-

tem extracts features from those scales using a similar con-
cept to feature pyramid networks [8]. From our base fea-
ture extractor we add several convolutional layers. The last
of these predicts a 3-d tensor encoding bounding box, ob-
jectness, and class predictions. In our experiments with
COCO [10] we predict 3 boxes at each scale so the tensor is
N ⇥N ⇥ [3 ⇤ (4 + 1+ 80)] for the 4 bounding box offsets,
1 objectness prediction, and 80 class predictions.

Next we take the feature map from 2 layers previous and
upsample it by 2⇥. We also take a feature map from earlier
in the network and merge it with our upsampled features
using concatenation. This method allows us to get more
meaningful semantic information from the upsampled fea-
tures and finer-grained information from the earlier feature
map. We then add a few more convolutional layers to pro-
cess this combined feature map, and eventually predict a
similar tensor, although now twice the size.

We perform the same design one more time to predict
boxes for the final scale. Thus our predictions for the 3rd
scale benefit from all the prior computation as well as fine-
grained features from early on in the network.

We still use k-means clustering to determine our bound-
ing box priors. We just sort of chose 9 clusters and 3
scales arbitrarily and then divide up the clusters evenly
across scales. On the COCO dataset the 9 clusters were:
(10⇥13), (16⇥30), (33⇥23), (30⇥61), (62⇥45), (59⇥
119), (116⇥ 90), (156⇥ 198), (373⇥ 326).

2.4. Feature Extractor
We use a new network for performing feature extraction.

Our new network is a hybrid approach between the network
used in YOLOv2, Darknet-19, and that newfangled residual
network stuff. Our network uses successive 3⇥ 3 and 1⇥ 1
convolutional layers but now has some shortcut connections
as well and is significantly larger. It has 53 convolutional
layers so we call it.... wait for it..... Darknet-53!

Type
Convolutional
Convolutional
Convolutional
Convolutional
Residual
Convolutional
Convolutional
Convolutional
Residual
Convolutional
Convolutional
Convolutional
Residual
Convolutional
Convolutional
Convolutional
Residual
Convolutional
Convolutional
Convolutional
Residual
Avgpool
Connected
Softmax

Filters
32
64
32
64

128
64

128

256
128
256

512
256
512

1024
512
1024

Size
3 × 3
3 × 3 / 2
1 × 1
3 × 3

3 × 3 / 2
1 × 1
3 × 3

3 × 3 / 2
1 × 1
3 × 3

3 × 3 / 2
1 × 1
3 × 3

3 × 3 / 2
1 × 1
3 × 3

Global
1000

Output
256 × 256
128 × 128

128 × 128
64 × 64

64 × 64
32 × 32

32 × 32
16 × 16

16 × 16
8 × 8

8 × 8

1×

2×

8×

8×

4×

Table 1. Darknet-53.



This new network is much more powerful than Darknet-
19 but still more efficient than ResNet-101 or ResNet-152.
Here are some ImageNet results:

Backbone Top-1 Top-5 Bn Ops BFLOP/s FPS
Darknet-19 [15] 74.1 91.8 7.29 1246 171
ResNet-101[5] 77.1 93.7 19.7 1039 53
ResNet-152 [5] 77.6 93.8 29.4 1090 37
Darknet-53 77.2 93.8 18.7 1457 78

Table 2. Comparison of backbones. Accuracy, billions of oper-
ations, billion floating point operations per second, and FPS for
various networks.

Each network is trained with identical settings and tested
at 256⇥256, single crop accuracy. Run times are measured
on a Titan X at 256 ⇥ 256. Thus Darknet-53 performs on
par with state-of-the-art classifiers but with fewer floating
point operations and more speed. Darknet-53 is better than
ResNet-101 and 1.5⇥ faster. Darknet-53 has similar perfor-
mance to ResNet-152 and is 2⇥ faster.

Darknet-53 also achieves the highest measured floating
point operations per second. This means the network struc-
ture better utilizes the GPU, making it more efficient to eval-
uate and thus faster. That’s mostly because ResNets have
just way too many layers and aren’t very efficient.

2.5. Training
We still train on full images with no hard negative mining

or any of that stuff. We use multi-scale training, lots of data
augmentation, batch normalization, all the standard stuff.
We use the Darknet neural network framework for training
and testing [14].

3. How We Do
YOLOv3 is pretty good! See table 3. In terms of COCOs

weird average mean AP metric it is on par with the SSD
variants but is 3⇥ faster. It is still quite a bit behind other

backbone AP AP50 AP75 APS APM APL

Two-stage methods

Faster R-CNN+++ [5] ResNet-101-C4 34.9 55.7 37.4 15.6 38.7 50.9
Faster R-CNN w FPN [8] ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2
Faster R-CNN by G-RMI [6] Inception-ResNet-v2 [21] 34.7 55.5 36.7 13.5 38.1 52.0
Faster R-CNN w TDM [20] Inception-ResNet-v2-TDM 36.8 57.7 39.2 16.2 39.8 52.1

One-stage methods

YOLOv2 [15] DarkNet-19 [15] 21.6 44.0 19.2 5.0 22.4 35.5
SSD513 [11, 3] ResNet-101-SSD 31.2 50.4 33.3 10.2 34.5 49.8
DSSD513 [3] ResNet-101-DSSD 33.2 53.3 35.2 13.0 35.4 51.1
RetinaNet [9] ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2
RetinaNet [9] ResNeXt-101-FPN 40.8 61.1 44.1 24.1 44.2 51.2
YOLOv3 608⇥ 608 Darknet-53 33.0 57.9 34.4 18.3 35.4 41.9

Table 3. I’m seriously just stealing all these tables from [9] they take soooo long to make from scratch. Ok, YOLOv3 is doing alright.
Keep in mind that RetinaNet has like 3.8⇥ longer to process an image. YOLOv3 is much better than SSD variants and comparable to
state-of-the-art models on the AP50 metric.

models like RetinaNet in this metric though.
However, when we look at the “old” detection metric of

mAP at IOU= .5 (or AP50 in the chart) YOLOv3 is very
strong. It is almost on par with RetinaNet and far above
the SSD variants. This indicates that YOLOv3 is a very
strong detector that excels at producing decent boxes for ob-
jects. However, performance drops significantly as the IOU
threshold increases indicating YOLOv3 struggles to get the
boxes perfectly aligned with the object.

In the past YOLO struggled with small objects. How-
ever, now we see a reversal in that trend. With the new
multi-scale predictions we see YOLOv3 has relatively high
APS performance. However, it has comparatively worse
performance on medium and larger size objects. More in-
vestigation is needed to get to the bottom of this.

When we plot accuracy vs speed on the AP50 metric (see
figure 5) we see YOLOv3 has significant benefits over other
detection systems. Namely, it’s faster and better.

4. Things We Tried That Didn’t Work
We tried lots of stuff while we were working on

YOLOv3. A lot of it didn’t work. Here’s the stuff we can
remember.

Anchor box x, y offset predictions. We tried using the
normal anchor box prediction mechanism where you pre-
dict the x, y offset as a multiple of the box width or height
using a linear activation. We found this formulation de-
creased model stability and didn’t work very well.

Linear x, y predictions instead of logistic. We tried
using a linear activation to directly predict the x, y offset
instead of the logistic activation. This led to a couple point
drop in mAP.

Focal loss. We tried using focal loss. It dropped our
mAP about 2 points. YOLOv3 may already be robust to
the problem focal loss is trying to solve because it has sep-
arate objectness predictions and conditional class predic-
tions. Thus for most examples there is no loss from the
class predictions? Or something? We aren’t totally sure.
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Figure 3. Again adapted from the [9], this time displaying speed/accuracy tradeoff on the mAP at .5 IOU metric. You can tell YOLOv3 is
good because it’s very high and far to the left. Can you cite your own paper? Guess who’s going to try, this guy ! [16]. Oh, I forgot, we
also fix a data loading bug in YOLOv2, that helped by like 2 mAP. Just sneaking this in here to not throw off layout.

Dual IOU thresholds and truth assignment. Faster R-
CNN uses two IOU thresholds during training. If a predic-
tion overlaps the ground truth by .7 it is as a positive exam-
ple, by [.3� .7] it is ignored, less than .3 for all ground truth
objects it is a negative example. We tried a similar strategy
but couldn’t get good results.

We quite like our current formulation, it seems to be at
a local optima at least. It is possible that some of these
techniques could eventually produce good results, perhaps
they just need some tuning to stabilize the training.

5. What This All Means
YOLOv3 is a good detector. It’s fast, it’s accurate. It’s

not as great on the COCO average AP between .5 and .95
IOU metric. But it’s very good on the old detection metric
of .5 IOU.

Why did we switch metrics anyway? The original
COCO paper just has this cryptic sentence: “A full discus-
sion of evaluation metrics will be added once the evaluation
server is complete”. Russakovsky et al report that that hu-
mans have a hard time distinguishing an IOU of .3 from .5!
“Training humans to visually inspect a bounding box with
IOU of 0.3 and distinguish it from one with IOU 0.5 is sur-

prisingly difficult.” [18] If humans have a hard time telling
the difference, how much does it matter?

But maybe a better question is: “What are we going to
do with these detectors now that we have them?” A lot of
the people doing this research are at Google and Facebook.
I guess at least we know the technology is in good hands
and definitely won’t be used to harvest your personal infor-
mation and sell it to.... wait, you’re saying that’s exactly
what it will be used for?? Oh.

Well the other people heavily funding vision research are
the military and they’ve never done anything horrible like
killing lots of people with new technology oh wait.....1

I have a lot of hope that most of the people using com-
puter vision are just doing happy, good stuff with it, like
counting the number of zebras in a national park [13], or
tracking their cat as it wanders around their house [19]. But
computer vision is already being put to questionable use and
as researchers we have a responsibility to at least consider
the harm our work might be doing and think of ways to mit-
igate it. We owe the world that much.

In closing, do not @ me. (Because I finally quit Twitter).

1The author is funded by the Office of Naval Research and Google.
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Figure 4. Zero-axis charts are probably more intellectually honest... and we can still screw with the variables to make ourselves look good!

Rebuttal
We would like to thank the Reddit commenters, labmates,

emailers, and passing shouts in the hallway for their lovely, heart-
felt words. If you, like me, are reviewing for ICCV then we know
you probably have 37 other papers you could be reading that you’ll
invariably put off until the last week and then have some legend in
the field email you about how you really should finish those re-
views execept it won’t entirely be clear what they’re saying and
maybe they’re from the future? Anyway, this paper won’t have be-
come what it will in time be without all the work your past selves
will have done also in the past but only a little bit further forward,
not like all the way until now forward. And if you tweeted about
it I wouldn’t know. Just sayin.

Reviewer #2 AKA Dan Grossman (lol blinding who does that)
insists that I point out here that our graphs have not one but two
non-zero origins. You’re absolutely right Dan, that’s because it
looks way better than admitting to ourselves that we’re all just
here battling over 2-3% mAP. But here are the requested graphs.
I threw in one with FPS too because we look just like super good
when we plot on FPS.

Reviewer #4 AKA JudasAdventus on Reddit writes “Entertain-
ing read but the arguments against the MSCOCO metrics seem a
bit weak”. Well, I always knew you would be the one to turn on
me Judas. You know how when you work on a project and it only
comes out alright so you have to figure out some way to justify
how what you did actually was pretty cool? I was basically trying
to do that and I lashed out at the COCO metrics a little bit. But
now that I’ve staked out this hill I may as well die on it.

See here’s the thing, mAP is already sort of broken so an up-
date to it should maybe address some of the issues with it or at least
justify why the updated version is better in some way. And that’s
the big thing I took issue with was the lack of justification. For
PASCAL VOC, the IOU threshold was ”set deliberately low to ac-
count for inaccuracies in bounding boxes in the ground truth data“
[2]. Does COCO have better labelling than VOC? This is defi-
nitely possible since COCO has segmentation masks maybe the
labels are more trustworthy and thus we aren’t as worried about
inaccuracy. But again, my problem was the lack of justification.

The COCO metric emphasizes better bounding boxes but that
emphasis must mean it de-emphasizes something else, in this case
classification accuracy. Is there a good reason to think that more

precise bounding boxes are more important than better classifi-
cation? A miss-classified example is much more obvious than a
bounding box that is slightly shifted.

mAP is already screwed up because all that matters is per-class
rank ordering. For example, if your test set only has these two
images then according to mAP two detectors that produce these
results are JUST AS GOOD:

Person: 99%

Dog: 99%

Camel: 99%

Bird: 99%

Person: 99%

Horse: 99%

Detector #1

Horse: 52%
Person: 42%

Dog: 48%

Camel: 10%

Bird: 90%

Person: 11%

Horse: 70%

Detector #2

Bird: 89%

Horse: 60%

Bird: 75%

Dog: 45%

Figure 5. These two hypothetical detectors are perfect according to
mAP over these two images. They are both perfect. Totally equal.

Now this is OBVIOUSLY an over-exaggeration of the prob-
lems with mAP but I guess my newly retconned point is that there
are such obvious discrepancies between what people in the “real
world” would care about and our current metrics that I think if
we’re going to come up with new metrics we should focus on
these discrepancies. Also, like, it’s already mean average preci-
sion, what do we even call the COCO metric, average mean aver-
age precision?

Here’s a proposal, what people actually care about is given an
image and a detector, how well will the detector find and classify
objects in the image. What about getting rid of the per-class AP
and just doing a global average precision? Or doing an AP calcu-
lation per-image and averaging over that?

Boxes are stupid anyway though, I’m probably a true believer
in masks except I can’t get YOLO to learn them.


