

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

UNIVERSITÉ DU QUÉBEC

SYS800

Reconnaissance de formes et inspection

Heuristic Anchor Box Selection

for the Single Shot Detector Algorithm

PRÉSENTÉ À: Mohamed Cheriet

PAR

Bozan XU - XUXB02079305

MONTRÉAL, 12 Décembre 2019

Summary

For this project, I propose a solution to optimize anchor boxes for state-of-the-art object
detection algorithm Single Shot Detector.

Nowadays, anchor boxes are pre-defined in a simple hand-picked fashion. Wei et al.
chose anchors with the ratio of 1:1, 1:2, 2:1, 1:3, and 3:1. In their original work, Single
Shot Detector 300x300 achieves 74.3% mAP on VOC2007 testing set.

To improve accuracy and reduce the number of anchor boxes needed, I propose to run
k-means on the ground truth boxes of the VOC2007+VOC2012 training set to adapt the
anchors to the data distribution. It was found that the number of anchors per grid cell
can be dropped from 6 to 4, and still observe an increased 0.7% mAP.

Table of Contents

INTRODUCTION ... 5
MOTIVATION .. 5
CURRENT CHALLENGES ... 5
PROBLEM STATEMENT .. 5

BASELINE ... 6
ARCHITECTURE ... 6
MULTI-SCALE FEATURE MAPS ... 6
MATCHING .. 8
LOSS FUNCTION .. 8

METHODOLOGY .. 9
PROPOSED APPROACH ... 9

VALIDATION AND RESULTS ... 10
PASCAL VOC .. 10
K-MEANS IMPLEMENTATION DETAILS .. 10
EXPERIMENTAL RESULTS ... 13

CONCLUSION .. 13
REFERENCES ... 14

Table of Figures
FIGURE 1: SSD ARCHITECTURE FEATURING VGG16 SERVING AS BACKBONE MODEL. ... 6
FIGURE 2: (A) A TRAINING DATA CONTAINING GROUND TRUTH BOXES FOR THE CAT AND THE DOG. (B) IN A FEATURE MAP THAT IS DIVIDED

INTO AN 8X8 GRID, THE ANCHOR BOXES OF DIFFERENT ASPECT RATIOS COVER THE SMALLER AREAS OF THE RAW INPUT. (C) IN A
COARSER GRID, THE ANCHOR BOXES DETECT OBJECTS IN LARGER AREAS OF THE INPUT. .. 7

FIGURE 3: VISUALIZING ANCHOR BOX DATA. .. 11
FIGURE 4: PLOTS OF THE CLUSTERS CALCULATED BY K-MEANS FOR DIFFERENT K. ... 11
FIGURE 5:CLUSTERING BOX DIMENSIONS ON VOC. ... 12

Introduction
In recent years, deep learning based object detection has seen great improvement in
speed and accuracy. One such algorithm is Single Shot Detector (SSD) which has shown
to be as accurate as Faster-R-CNN [1] and runs at over than twice the speed.

Motivation
Today, objection detection algorithms have taken center stage especially as many big
corporations race toward building the first generation of autonomous vehicles. The
applications of these algorithms range from autopilot systems to facial recognition and
from anomaly detection to video tracking. As a result, many architectures of deep networks
have been developed to solve the same problem. In order to compare these different
detectors, we measure their performance in terms of mAP and speed. SSD is one such
network. It is part of a subclass of detectors called single stage detectors. They are
generally used for applications that require real-time processing, but they are not as
accurate as algorithms belonging to the two-stage detector family, like Faster-R-CNN.
Current Challenges
Other from needing to process billions of image, lidar, radar, and map data, there is a
critical need for faster and more robust algorithms that will improve the safety and reliability
of autonomous systems. There are many concerns about how quickly they can come to
market even if they work some of the time -- The technology has to work perfectly.

One obvious challenge arises when there is no large-scale labeled data. In the case for
autopilot applications, amongst thousands of possible scenarios, let’s imagine the instance
for which, a traffic cop signals drivers to go around a construction site, into incoming
traffic. The human driver will easily be able to break traffic rules and follow hand signs, but
it will be hard for an autonomous car to make the same decision. The truth is, there is still a
long way to go before robots can accurately differentiate complex social interactions.

Furthermore, from an analytical point of view, current leading algorithms are, while
accurate, very computationally intensive, such that they are too slow for real-time
applications, and simply do not run on embedded systems [1]. SSD is a state-of-the-art
algorithm that balances speed and accuracy. But in the last two years, there have been
algorithms like Retinanet that are still slower, but provides much higher accuracy.
Problem Statement
In this project, I aim to find a way to improve the accuracy of SSD. Even though it achieves
a modest 74.3 mAP, some aspects of SSD can be reworked.

In its original paper, one point that left many people wondering is the simple way that Wei
et al hand-picked their anchor boxes. The researchers do not provide any explanation on
their choices. I think that if the anchor boxes follow the shapes of the data, they will make
better predictions, hence improving the accuracy.

After going through class material, in Chapter 6, I came across a statistical method called
k-means that classifies objects into clusters. If I apply k-means on the shape of the labeled
data, will the generated anchor boxes improve detection for that specific dataset? We will
find out in this project.

Baseline
Architecture
Developed in 2016 by Liu et al., SSD is a one-step approach, hence the name “single shot
detector”. SSD comprises of two main components:

1) A backbone model, that functions as a feature extractor. It is usually a pre-trained
image classification network like ResNet or Mobilenet, but whose final fully
connected classification layer has been removed. In the original paper [1], Liu et al
used VGG16.

2) And, an SSD head, made out of convolutional layers that progressively decreases
in size to allow detection at multiple scales. It outputs the bounding boxes and
classes of objects in the spatial location of the final layer activations.

Figure 1: SSD architecture featuring VGG16 serving as backbone model.

As illustrated in Figure 1, the backbone network, VGG16, has had its final activation layer
removed. On the VGG16 network, it means that we are only taking it up to layer Conv4_3,
which happens to be a size 38x38x512. To this layer, we apply a 3x3 filter in the hopes to
extract some kind of feature from the image. It also reduces the spatial dimension of the
feature map while retaining only the most important information.

Connected to Conv4_3 is the SSD head. The SSD head consists of convolutional layers
Conv7 through to Conv11_2, with a couple of 1x1 or 3x3 filters connecting each layer one
another.

Multi-Scale Feature Maps
The application of 1x1 and 3x3 filters reduces the spatial dimension gradually which
means that the resolution of the feature maps also decreases, but in the SSD framework,
lower resolution layers are used to detect larger objects, as shown in Figure 2 (c).

SSD works by dividing the input image into a grid of cells. Each grid cell is responsible for
predicting the class and position of objects within it. If there is no object, it will predict the
background class, and no location will be returned.

Figure 2: (a) A training data containing ground truth boxes for the cat and the dog. (b) In a feature map that is divided into an
8x8 grid, the anchor boxes of different aspect ratios cover the smaller areas of the raw input. (c) In a coarser grid, the anchor
boxes detect objects in larger areas of the input.

Anchor boxes are chosen manually. In the original paper, Wei et al chose six anchor boxes
of ratio !1, 2, 3, &

'
, &
(
). They seem like 5 right now, but we will get to the 6th box.

SSD defines a scaling factor for each of the 6 feature maps. We define index 𝑘 ∈ [1, 6] to
represent the k-th feature map. Then,

𝑠0 = 𝑠234 +
𝑠267 − 𝑠234

6 − 1 (𝑘 − 1)
where 𝑠234 = 0.1, 𝑠267 = 0.7, and 𝑠2>& = 1. This means that starting from the left, the
layers in the SSD head detect objects from the smallest scale of 0.1 all the way up to a
scale of 0.7.
We can then compute the width and height of the anchor boxes:

𝑤 = 𝑠 ∗ A𝑎𝑠𝑝𝑒𝑐𝑡	𝑟𝑎𝑡𝑖𝑜
ℎ = 𝑠/A𝑎𝑠𝑝𝑒𝑐𝑡	𝑟𝑎𝑡𝑖𝑜

For the aspect ratio of 1, the SSD adds an extra anchor box with scale:

𝑠0′ = A𝑠0 ∗ 𝑠0>&

Every anchor box is also centered about the grid cell. Its center coordinates are:

N
𝑖 + 0.5
𝑓0

,
𝑗 + 0.5
𝑓0

R

where 𝑓0 is the size of the k-th feature map and 𝑖, 𝑗	 ∈ [0, 𝑓0].

To calculate the total number of bounding boxes that will be predicted, we combine the
predictions from every anchor box of different scales and aspect ratios coming from every
grid cell. This number is usually in the thousands, and as for larger models like SSD512,
the output makes 24564 predictions[1]. For SSD300, the number of output boxes per
feature map are listed below.

Convolutional Layer Dimension Number of Anchor Boxes
Conv4_3 38x38 8664
Conv7 19x19 2166

Conv8_2 10x10 600

Conv9_2 5x5 150
Conv10_2 3x3 54
Conv11_2 1x1 6

Matching
During training, each ground truth box is first matched with an anchor box with which it
gets the highest Jaccard overlap. Then, any anchor box that gets an overlap higher than
the threshold of 0.5 is also matched to the corresponding ground truth box. In Figure 9 (b),
there are two anchor boxes matched with the cat. These anchor boxes are called positive
matches, whereas the two other anchors are negative matches. The training objective is
then to minimize a loss function.

Loss Function
The loss function for SSD is a weighted sum of classification loss and localization loss:

𝐿 = 	
1
𝑁 (𝐿UV6WW3X3U6Y3Z4+∝ 𝐿VZU6V3\6Y3Z4)

where N is the number of matched anchor boxes and ∝ balances the weights between the
losses.

The localization loss is a loss between the predicted box correction (𝑑23) and the true
values 𝑔2

_ :
𝐿VZU6V3\6Y3Z4 = 	` ` Ι3_0

2∈{7,c,d,e}

𝐿W2ZZYeg&(𝑑23 − 𝑡2
_)'

3_

where Ι3_0 represents the matching between 𝑖Ye anchor box with coordinates (𝑝73 , 𝑝c3 , 𝑝d3 , 𝑝e3)
and 𝑗Ye ground truth box with coordinates (𝑔73 , 𝑔c3 , 𝑔d3 , 𝑔e3) for an object in class 𝑘. It is 1 if if
𝐼𝑜𝑈 > 0.5, and 0 otherwise.
𝐿W2ZZYeg& is a Smooth L1 loss defined as:

𝐿W2ZZYeg&(𝑠) = k 0.5𝑠'
|𝑠| − 0.5

𝑤ℎ𝑒𝑛	|𝑠| < 1
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑡2
_ represent the offsets for the center, width, and height of the anchor boxes. They are

defined as:
𝑡7
_ = (𝑔7

_ − 𝑝73)/𝑝d3
𝑡c
_ = (𝑔c

_ − 𝑝c3)/𝑝e3

𝑡d
_ = log r

𝑔d
_

𝑝d3
s

𝑡e
_ = log r

𝑔e
_

𝑝e3
s

As for the classification loss, we apply a softmax to make it into a nice probability function:

𝐿UV6WW3X3U6Y3Z4 = 	− ` Ι3_0 logt𝑐̂30v
w

3∈xZW

− ` log(𝑐̂3y)
w

3∈wz{

where 𝑐̂30 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥t𝑐30v =
z7~(U�

�)
∑ U�

�
�

For positive matches, the classification loss is penalized according to the confidence score
of class 𝑘. For negative matches, SSD predicts class 0, or background, meaning no object
was detected.

As mentioned in the previous section, there is a very large number of predictions that are
made for the number of objects present in a given image. This means that there will be
many times more negative matches than positive matches. The imbalance causes the
model to learn about the background space rather than detecting objects. To remedy this
problem, SSD only keeps the matches with highest confidence (false positives) as to keep
a ratio of 3:1 between negatives and positives. Apparently, this ratio leads to faster
optimization and even makes the training process more stable[1].

Methodology
SSD predicts 6 bounding boxes for every grid cell on a feature map. During training, these
anchor boxes compete with each other to score the highest Jaccard Index to predict
objects. In the original paper, Wei et al handpicked the boxes in function of what they
thought would work with the dataset.
Proposed Approach
To improve the accuracy of this detector, I propose a heuristic way to design the anchor
boxes.

K-means clustering is one of the most popular unsupervised machine learning algorithms.
In k-means clustering, we define 𝑘 centroids where each centroid corresponds to the
center of a non-overlapping cluster. K-means aims to minimize the following function:

𝐽 =``𝑤30(𝑥3 − 𝜇0)'
�

0�&

4

3�&

where 𝑤30 = 1 if data point 𝑥3 belongs to cluster 𝑘, and 𝑤30 = 0 otherwise.
𝜇0 is the k-th centroid defined by:

𝜇0 =
∑ 𝑤30𝑥34
3�&

∑ 𝑤304
3�&

K-means minimizes the objective function in two parts [2]. First, it allocates every data
point to the nearest cluster by computing the sum of the squared distances between the
data points and each centroid to find the minima. This is reflected by taking the derivative
of 𝐽 with respect to 𝑤30.

𝜕𝐽
𝜕𝑤30

=``(𝑥3 − 𝜇0)'
�

0�&

4

3�&

Then, it averages each data point in a cluster to find a new centroid. This is done by taking
the derivative of 𝐽 with respect to 𝜇0.

𝜕𝐽
𝜕𝜇0

= 2`𝑤30 ∥ 𝑥3 − 𝜇0 ∥= 0
4

3�&

As we have seen in Chapter 6 of the class, the k-means algorithm starts with randomly
selected centroids and it performs iterative calculations to optimize the positions of the
centroids until the centroids are stabilized.

In order to establish a controlled environment to compare the accuracy of SSD and SSD
with k-means, I plan on dividing the workload in three.

I will start by creating a custom training and validation set from the PASCAL
VOC2007+VOC2012 dataset. I will use the VOC2007 test set for testing.

The second step is to implement an SSD model. For that, I used OpenCV library with
Python bindings for image processing, and a TensorFlow backend to build and train the
network. Due to limitation on time, I could not train the network in the same way as was
described in the original paper [1]. Once trained, I will test my version of SSD to see if I
can get the performance from the original paper.

Finally, I will run k-means clustering on the shapes of the ground truth boxes in the training
set and compare the change in accuracy on the testing set.

Validation and Results
PASCAL VOC
The PASCAL VOC 2007 dataset contains box annotations for 20 classes. The training and
validation set consists of 9,963 images with 24,640 annotated objects.

The PASCAL VOC 2012 dataset contains box annotations for 20 classes. The training and
validation set consists of 11,530 images with 27,450 annotated objects.

The training and validation set I am using consists of a mix of the VOC2007 and VOC2012
training sets. The testing set is the VOC2007 test set that contains 4952 images.

The training was done in 30,000 iterations of Stochastic Gradient Descent with a
scheduled learning rate.

Iterations Learning Rate
0~100 10��

101~15,000 10�(
15,001~27,000 10��
27,001~30,000 10��

I rented a TPU provided by Google Colab to complete the training. It took over 6 hours to
complete.

K-means Implementation Details
Since k-means uses distance based measurements to determine the similarity between
data points, I needed to prepare data containing the standardized height and width. The
shape of the clustering feature data is then

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑜𝑏𝑗𝑒𝑐𝑡𝑠	 ×	(𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡)

To visualize the clusters, I plot the clustering data.

Figure 3: Visualizing anchor box data.

The data does not seem easily separable at first sight. To choose the ideal number of
anchor boxes	𝑘, I ran k-means on 𝑘 = 2, 3, … , 7.

Figure 4: Plots of the clusters calculated by k-means for different k.

Number of Clusters Mean IoU
2 0.4646
3 0.5391
4 0.5801
5 0.6016
6 0.6253
7 0.6434

The trend we observe is that the more clusters there are, the more overlap there will be
between the generated anchor boxes and the ground truth boxes. It makes sense because
if we had 𝑘 = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑜𝑏𝑗𝑒𝑐𝑡𝑠, we would expect a mean IoU of 1.

In Figure 5, we used the elbow method to find that the optimal 𝑘 = 4 for the PASCAL
VOC2012 dataset. This might be good because SSD predicts a large number of
background class objects, so with fewer anchor boxes, SSD learns faster and makes
training more stable in the early stage.

Figure 5:Clustering box dimensions on VOC.

And according to k-means, the four ideal centroids are:

Aspect Ratio of Anchor Boxes
1 : 1.654
1 : 1.891
1.037 : 1
1 : 1.478

This means that with only these four anchor boxes, we get a better representation of the
data and make the training more robust. These anchor boxes also tell us that we aspect
ratios of !&

(
, 3) might not be very important in detecting objects in the PASCAL VOC

datasets.

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 1 2 3 4 5 6 7 8

M
ea

n
Io

U

Number of Clusters

Elbow Curve

Experimental Results

Method mAP@0.5
SSD300 (baseline) 74.3 [1]

SSD300 without !&
(
, 3) 73.7 [1]

SSD330 without !&
(
, &
'
, 2, 3) 71.6 [1]

my_SSD300 74.2
my_SSD300 + k-means 74.9

In the original paper, SSD achieves an accuracy of 74.3 when using all 6 hand-picked
anchor boxes. When using only 4 anchors, it was shown that it only achieved an accuracy
of 73.7. The table above shows that my implementation of SSD achieves a slightly lower
accuracy of 74.2 when using the 6 anchor boxes chosen by the authors, but it is able to
achieve an accuracy of 74.9 when the anchors are determined by k-means. From the
results, the proposed anchor box optimization method boosts the performance by 0.7% on
my version of SSD or a 0.6% boost compared to the baseline.

Conclusion
In this project, I introduced k-means as a method for anchor optimization for SSD. The
anchors produced by k-means are better adapted for any custom dataset, which in turn,
lead to an increase in accuracy. We can imagine that detecting characters will need very
different anchor boxes than detecting wildlife. The proposed method demonstrated a 0.7%
increase in performance on the popular SSD detector. In fact, this method is general and
can be extended to any object detection algorithm that makes use of anchor boxes.
Finally, this project solves the problem of choosing the best shapes of anchor boxes, but
given more time, I would test the performance of SSD for different values of k to find the
optimal number of anchor boxes, which in itself would be an interesting topic to study.

References

1. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, and S. Reed. SSD: Single Shot MultiBox
Detector. arXiv preprint arXiv:1512.02325, 2016.

2. T.Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman and A.Y. Wu. An

efficient k-means clustering algorithm: analysis and implementation. IEEE, 2002.

